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The structure of weakly compressible
grid-generated turbulence
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A decaying compressible nearly homogeneous and nearly isotropic grid-generated
turbulent flow has been set up in a large scale shock tube research facility. Experi-
ments have been performed using instrumentation with spatial resolution of the order
of 7 to 26 Kolmogorov viscous length scales. A variety of turbulence-generating grids
provided a wide range of turbulence scales with bulk flow Mach numbers ranging
from 0.3 to 0.6 and turbulent Reynolds numbers up to 700. The decay of Mach
number fluctuations was found to follow a power law similar to that describing the
decay of incompressible isotropic turbulence. It was also found that the decay coeffi-
cient and the decay exponent decrease with increasing Mach number while the virtual
origin increases with increasing Mach number. A possible mechanism responsible
for these effects appears to be the inherently low growth rate of compressible shear
layers emanating from the cylindrical rods of the grid. Measurements of the time-
dependent, three dimensional vorticity vectors were attempted for the first time with
a 12-wire miniature probe. This also allowed estimates of dilatation, compressible
dissipation and dilatational stretching to be obtained. It was found that the fluctua-
tions of these quantities increase with increasing mean Mach number of the flow. The
time-dependent signals of enstrophy, vortex stretching/tilting vector and dilatational
stretching vector were found to exhibit a rather strong intermittent behaviour which
is characterized by high-amplitude bursts with values up to 8 times their r.m.s. within
periods of less violent and longer lived events. Several of these bursts are evident
in all the signals, suggesting the existence of a dynamical flow phenomenon as a
common cause.

1. Introduction
A fundamental understanding of compressible turbulence in the absence of shock

wave interactions is necessary for the development of supersonic transport aircraft,
combustion processes, and high-speed rotor flows. Compressibility effects on turbu-
lence are significant when the energy associated with dilatational fluctuations is large
or when the mean flow is compressed or expanded. Most of the previous work on
compressible turbulence has been carried out in shear layers (see Gutmark, Schadow
& Yu 1995, for the most recent review on compressible free shear flows) or bound-
ary layers (see Spina, Smits & Robinson 1994). Previous work on homogeneous
and isotropic compressible turbulence (see figure 1 for a typical flow schematic) is
very limited although this flow is the best candidate for testing calculation methods
and turbulence modelling. The reader is referred to the work by Lele (1994) where
different contributions to the understanding of compressibility effects on turbulence
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Figure 1. Grid-generated flow schematic.

are reviewed in detail. A substantial amount of experimental work dealing with the
incompressible grid-generated turbulence already exists (see Compte-Bellot & Corrsin
1966, 1971). The effect of grids and perforated plates as flow straighteners on the free
stream turbulence was studied by Tan-Atichat, Nagib & Loehrke (1982) for Reynolds
number based on mesh size ReM up to 735. They found that the performance of the
grid depends on the characteristics of the incoming flow. For a larger range of mesh
Reynolds number ReM ranging from 12800 to 81000, Frenkiel, Klebanoff & Huang
(1979) performed experiments where they observed that data exhibited a high degree
of similarity. Their analysis of the higher-order correlations and moments of the turbu-
lent velocity components revealed that the turbulent fluctuations are of non-Gaussian
character. Tavoularis, Bennett & Corrsin (1978) presented a comprehensive study of
values of the skewness of velocity derivative for a variety of flow fields and Reλ. This
study indicated that the skewness of the velocity derivative reaches a maximum at
Reλ = 5 and then gradually decreases as the turbulent Reynolds number increases.

Grid turbulence at large mesh Reynolds number (1.2× 105 to 2.4× 106) was studied
by Kistler & Vrebalovich (1966). To avoid compressibility effects the mean flow was
kept below 60 m s−1. From the literature review it is evident that in all of the above
studies on grid-generated turbulence compressibility effects were absent or undesirable.
One of the first attempts to generate compressible isotropic turbulence was described
by Honkan & Andreopoulos (1992) and Honkan, Watkins & Andreopoulos (1994)
who set up a flow with Reλ ≈ 1000. Recently Budwig et al. (1995) and Zwart, Budwig
& Tavoularis (1997) worked on compressible streams with three different Mach
numbers in a supersonic wind tunnel. The decay coefficient for the lowest Mach
number of 0.16 was found to be −1.24, and −0.49 for the highest Mach number of
1.6. However, inhomogeneity across the test section prevented them from measuring
decaying turbulence at high Mach numbers.

The present experimental work is a fundamental study of compressibility effects
in grid-generated turbulence for flows with Mach numbers ranging from 0.3 to 0.6.
The measurements were carried out inside the induced flow behind a travelling shock
wave in a shock tube facility. Time-dependent measurements of one, two and three
velocity components have been carried out. Measurements of the vorticity vector and
the full dissipation tensor at a limited number of locations inside the flow have been
also attempted for the first time in compressible flows.

In the present work there is no shock wave interaction with the flow which causes
sudden compression of the flow field, as there was in our previous work (Briassulis
& Andreopoulos 1994, 1996).

2. Experimental set-up
The experiments were performed in the Shock Tube Research Facility (STURF),

shown in figure 2(a), which is located at the Mechanical Engineering Department of
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Figure 2. (a) Shock tube research facility (not to scale). (b) X-wire probe location and
arrangement in the shock tube.

CCNY. The large dimensions of this facility, 1 ft in diameter and 88 ft in length,
provide an excellent platform for high-spatial-resolution measurements of turbulence
with long observation time of steady flow. The induced flow behind the travelling
shock wave passes through a turbulence-generating grid installed in the beginning
of the working section of the facility. Several turbulence-generating grids were used
at three different flow Mach numbers. The velocity of the induced flow behind the
shock wave depends on the rupture pressure of the diaphragm, i.e. driver strength.
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The working (test) section is fitted with several hot-wire and pressure ports. Thus
pressure, velocity and temperature data can be acquired simultaneously at various
locations downstream from the grid (see figure 2b), therefore reducing the variance
between measurements. High-frequency pressure transducers, hot-wire anemometry
and Rayleigh scattering techniques for flow visualization have been used in the present
investigation.

To assess the flow quality in the facility several tests were carried out. First the
shock wave was visualized in order to check its inclination and planform by a non-
intrusive optical technique using a Nd:YAG laser emitting in the UV range and a UV
sensitive 16 bit CCD camera made by ASTROMED Corporation. Second the flow
homogeneity was checked by a hot-wire rake constructed for simultaneous acquisition
of velocity and temperature data at various radial positions. Details of an extensive
evaluation of the flow quality can be found in the work of Briassulis et al. (1996)
while quantitative results are presented in § 4 below.

To simultaneously resolve two-dimensional velocity components with hot wires, a
cross-wire (X-wire) arrangement was used. New three-wire probes were designed and
custom built by AUSPEX Corp. Six different three-wire probe assemblies were used
concurrently at different downstream locations, all adjustable to different lengths,
each carrying two hot wires in an X configuration and one cold wire for simultaneous
velocity and temperature measurements respectively. The three-wire probes were
equipped with 5 µm platinum/tungsten wires for velocity measurements and with
a 2.5 µm platinum/tungsten wire for temperature measurements. To eliminate any
wake effects from probes located upstream, all of the probes were staggered at
increasing distances from the tube wall with downstream station and every other
probe reoriented by 90◦ by using two axial array of probe taps along the test section.
The cross-wires were driven by DANTEC anemometers model CTA56C01 and the
temperature wires were connected to EG&G model 113 low-noise, battery-operated
pre-amplifiers/filters. The output signal of the cold wire was digitally compensated for
thermal lag up to frequencies of interest. For more details on the hot-wire techniques
applicable to shock tubes, see Briassulis et al. (1995) where estimates of uncertainties
in the measurements are also given.

Time-dependent pressure fluctuations were obtained by 6 miniature high-frequency-
response Kulite pressure transducers installed on the shock tube wall.

During each experiment all signals were acquired simultaneously with the ADTEK
data acquisition system. The ADTEK AD830 board is a 12-bit EISA data acquisition
system, capable of sampling simultaneously eight channels at 333 KHz each channel.
Three of those boards are currently available providing 24 simultaneous sampled
channels at 333 KHz per channel. It should be mentioned that no sample-and-hold
units were used in the present data acquisition since each channel was dedicated to
an individual analog to digital converter. The data acquisition system was triggered
by the arrival of the shock wave at the location of a wall pressure transducer 0.30 m
upstream of the grid. The grid was installed in the beginning of the working section.

This experimental set-up provided time-dependent measurements of two velocity
components, temperature and wall pressure at several locations of the flow field
simultaneously. In addition, time-dependent three-dimensional vorticity measurements
were carried out by using a new vorticity probe (see Andreopoulos & Honkan 1996
and Honkan & Andreopoulos 1997). Details of this technique are given in § 5 below.

The bulk flow parameters of the experiments performed are summarized in table 1
and include the grid mesh density, the mesh size M, the flow Mach number Mflow , the
Reynolds number ReM based on mesh size and mean flow velocity U1, the Reynolds
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Grid (meshes/in.) M (mm×mm) σ Mflow ReM Reλ (range)

5× 5 5.1× 5.1 0.37 0.371 59 654 160–318
5× 5 5.1× 5.1 0.37 0.477 86 315 200–269
5× 5 5.1× 5.1 0.37 0.576 102 421 240–458
4× 4 6.35× 6.35 0.44 0.354 68 208 213–401
4× 4 6.35× 6.35 0.44 0.446 105 389 198–336
4× 4 6.35× 6.35 0.44 0.594 132 921 113–352
3× 3 8.5× 8.5 0.39 0.321 81 687 154–239
3× 3 8.5× 8.5 0.39 0.474 124 203 184–201
3× 3 8.5× 8.5 0.39 0.564 215 043 330–747
2× 2 12.7× 12.7 0.38 0.346 137 319 186–281
2× 2 12.7× 12.7 0.38 0.436 169 025 195–452
2× 2 12.7× 12.7 0.38 0.592 261 667 560–1331

1.33× 1.33 19.05× 19.05 0.26 0.368 200 371 210–278
1.33× 1.33 19.05× 19.05 0.26 0.504 295 721 217–612
1.33× 1.33 19.05× 19.05 0.26 0.607 398 661 257–760

Table 1. Bulk flow parameters of the experiments performed.

number Reλ based on Taylor’s microscale λ, and the solidity of the grids σ, defined
as the projected solid area per unit total area so that σ = 1 − [1 − d/M]2 where d
is the rod diameter. The range of values of Reλ obtained in the isotropic part of the
flow downstream of the grid is also shown in table 1. All grids were fabricated from
circular steel rods.

The values of Mflow were obtained in the flow downstream of the grid and they
are slightly smaller than the Mach number values obtained in the approaching flow
upstream of the grid (see Honkan et al. 1994). As the incoming shock wave reaches
the grid, it is transmitted through it with some minor losses due to viscous effects,
while a very weak reflected shock travels as a small disturbance in the opposite
direction upstream as a result of the impact of the incident shock on the grid. This
weak disturbance is stronger at higher shock Mach numbers and in impacts with
higher solidity grids. This weakly reflected shock reduces the velocity and increases
the temperature of the approaching flow by small amounts. The induced flow behind
the incident shock, after it has experienced the effects of the upstream travelling
weakly reflected shock, passes through the grid to form a nearly homogeneous and
isotropic flow.

3. The shock tube flow
Unlike conventional low-speed grid turbulence, generated in a wind tunnel, the

present flow is produced in a shock tube behind a moving shock wave. Shock tubes
are traditionally used to study mainly moving shock waves and their reflections or
interactions with solid surfaces and to generate high temperature environments. Our
work is not the first one to configure a stationary flow behind a moving shock wave.
There have been several attempts in the past to utilize the induced flow behind
the shock to study several flow phenomena. Oppenheimer for instance (Majda 1999,
private communication) used a shock tube at Berkeley to establish several flow
instabilities in the early 1950s. More recently, Hesselink & Sturtevant (1988), Keller
& Merzkirch (1990) and Honkan & Andreopoulos (1992) used a shock tube to study
the interaction between grid turbulence and a shock wave.
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The duration of the induced flow behind the shock wave may be limited by the
arrival of reflected expansion waves from the driver endwall which are formed during
the rupture of the diaphragm, by the arrival of shock or expansion waves formed at
the downstream endwall and the arrival of the contact surface which is characterized
by a large temperature gradient.

The present shock tube has been designed to study interactions of turbulent flows,
including the current one, with normal shock waves in the absence of streamline
curvature (see Andreopoulos, Agui & Briassulis 2000). This facility has three distin-
guishing features. The most significant one is the ability to control the strength of the
reflected shock and the flow quality behind it by using a removable porous endwall,
placed at the flange between the dump tank and the working section. The impact of
a shock wave on the endwall would result in a full normal shock reflection for zero
porosity (solid wall), a weak shock reflection for moderate porosity, or expansion
waves for infinite porosity (open endwall). The second feature of the facility is the
ability to vary the total length of the driven section by adding or removing one of
the several pieces or modules that are available or rearrange their lay-out. Proper
arrangement of the lay-out of the various modules of the shock tube can maximize
the duration of the useful flow. The third feature of the facility is its large diameter,
which allows a large area of uniform flow in the absence of wall effects to be avail-
able while at the same time providing a platform for high spatial resolution in the
measurements of turbulence.

Figure 3(a) shows the x–t diagram of the measured pressure data in a flow with a
Mach number 0.7. The contours were obtained by interpolating the time-dependent
signals of 12 wall pressure transducers installed at various locations along the driven
and working sections. Figure 3(b) shows the corresponding theoretical x–t diagram
obtained from one-dimensional theory. Also on figure 3(b), experimental data are
plotted which are related to the arrival of the incident, and reflected shock waves and
the reflected expansion waves. It appears that the agreement between experimental
data and theoretical predictions for both the incident and reflected shock is good. The
experimental data also suggest a shock speed which is always less than the theoretical
one. In most facilities this is the case. Figure 3 can be used to obtain an estimate
of the duration of the uniform induced flow behind the incident shock. As can be
seen from the figure, at the location x/L = 0.8, which corresponds to the location
of the working section, the duration of the flow bounded by the incident shock, the
contact surface and the arrival of the expansion waves and reflected shock is about
tc1/L = 0.2 to 0.4 which indicates a 14 to 24 ms flow duration at this Mach number
Mflow = 0.7.

Figure 4(a) shows typical signals of velocity and temperature, acquired in the present
investigation, non-dimensionalized by the corresponding mean values obtained over
the time of interest. The arrival of the incident and reflected shocks is also marked
in this figure. It can be observed that the passage of the incident shock increases
the velocity as well as the temperature of the induced flow while the passage of the
reflected shock decreases the local velocity and increases the temperature. In principle,
the time between the arrival of the incident shock and the arrival of its reflection
over the endwall define the duration of data non-contaminated by interactions with
shock waves or expansion waves. In the present case, this time appears to be about
14.5 ms. However, this time cannot be considered entirely as containing useful data
because immediately after the incident shock the induced flow corresponds to the air
mass located between the grid and the location of measurement before it was put
into motion by the shock. This mass of air flow has not passed through the grid and
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Figure 3. x–t diagram of static pressure: (a) experimental data; (b) from numerical simulation
(symbols indicate arrival of shock and expansion wave fronts of the corresponding experimental
data).

has to be excluded in our consideration of useful data. Thus the effective origin of
the useful data is shifted after the passage of the incident shock by time of at least
t0 = x/U1, where x is the measurement location measured from the grid and U1 is
the mean velocity. Values of this time shift are in the range of 1 ms to 3 ms.

Although all signals were visually inspected for the presence of undesirable reflected
expansion or shock waves in the flow field, a more objective criterion was used to
determine whether the data were seriously biased or contaminated by the arrival of
these reflections: The mean time derivative ∂Q/∂t was computed for the quantity Q
where Q can be any one of U, ρU,T0, p, or vorticity. This derivative was computed by
summing the central difference ∆Qi = (Qi+1 − Qi−1)/2 between two points and then
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Figure 4. (a) Typical velocity and temperature signals. (b) Time derivative of mean velocity
at a location close to the grid. (c) Mean velocity convergence at a location close to the grid.
(d) Turbulence intensity convergence at a location close to the grid. (e) Mean velocity convergence
at a location far away from the grid. (f) Time derivative of mean velocity at a location far away
from the grid. (g) Turbulence intensity convergence at a location far away from the grid.
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summing to compute the ensemble average:〈
∂Q

∂t

〉
=

1

N

N∑
i=1

∆Qi

∆t

where ∆t is the sampling interval and N is the number of samples under consideration.
If this mean slope was close to zero within a small quantity e, the number of samples
was reduced and the computation of statistical averages was repeated until the
criterion ∂Q/∂t < e was satisfied. In addition to checking for the presence of possible
expansion or shock waves, the integral time scale Lt was used to determine the
number of independent statistical realizations needed to ensure convergence. It is
defined as

Lt =

∫ ∞
0

Ruu(τ)dτ

where Ruu(τ) is the autocorrelation function defined as Ruu(τ) = u(t) · u(t+ τ)/u2. To
calculate the time scale, numerical integration of Ruu(τ) was carried out up to the first
zero crossing point. This particular case shown in figure 4(a) indicated that the time
scale was about 0.030 ms corresponding to 10 times the sampling interval.

Figure 4(b) shows values of the ensemble averages of the time-derivative of the mean
velocity properly normalized, as a function of the number of large-eddy realizations,
t/Lt. The data show that the mean velocity slope rapidly becomes small as the number
of realizations increases. The major cause for the fluid acceleration in shock tube flows
is the displacement effects caused by the growth of the wall boundary layer. The large
diameter of the present shock tube, however, considerably suppresses this effect. As a
result all signals in the present investigation were practically stationary.

Convergence of the statistical averages was also monitored closely. Figure 4(c), for
instance, shows the rate of convergence of the mean velocity 〈U1〉U1 as a function of
t/Lt, for the same data shown in figures 4(a) and 4(b). Mean velocity data seem to
converge to within 1% very quickly, i.e. within 30 realizations. The rate of convergence
of the turbulence intensity 〈u′1/U1〉, which is shown in figure 4(d), is much slower than
that of the mean velocity. About 200 independent realizations were needed for this
case, while about 500 were available before the arrival of the reflected shock.

Far away from the grid, the number of statistically independent available realiza-
tions was reduced considerably for two reasons: first because the duration of the
useful data was reduced by the earlier arrival of the reflected shock and the longer
time shift of the origin to, and second because of the rapid increase of the integral
time scales further downstream from the grid where the eddies amalgamate and form
larger ones. Integral time scales can increase up to 3 times further downstream from
the grid while the useful flow time duration can be reduced by 50% from the values
closer to the grid. Thus the increase in Lt has a greater impact on the number of
available realizations than the reduced time duration of useful data. Figure 4(e) shows
the rate of convergence of mean velocity 〈U1〉 in a case where only 80 realizations
were available. Convergence to within 1% is obtained with 15 realizations. The time
derivative of mean velocity 〈∆U1/∆t〉Lt/U1 has also been computed and it reaches
values 0.1% almost within 15 realizations.

Figure 4(g) shows the rate of convergence the two r.m.s. values 〈u′1/U1〉 and 〈u′2/U1〉.
Convergence is achieved within 65 large eddy realizations while the difference between
the two r.m.s. values is less than 2.5%, which is indicative of good isotropic conditions
in the flow.
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Information from statistics indicates that reliable statistical averages can be ob-
tained from 80 independent samples. For instance, 60 samples are enough to capture
99% of the standard deviation obtained from unlimited samples. The need to use
additional realizations from other experiments under the same conditions in cases
like the previous one was considered in detail in relation with the repeatability of the
measurements. Tests show that the repeatability of statistical averages obtained from
different experiments was within 25% of the uncertainties involved. It was found that
if this value is used to satisfy the convergence criteria, convergence could be obtained
within one experimental realization only. In that respect the statistical averages pre-
sented here have been obtained by considering the data from one experiment only.
It is of interest to address the future values of what is called tolerance limits (Wilks
1962) i.e. the lowest and highest values which define the range. Based on values
obtained in this investigation and with a confidence level of 99%, the probability that
all future values will be within the present limits is between 95% and 99%.

4. Flow quality
An extensive programme has been undertaken to assess the quality of the grid

flow established in the shock tube. This was accomplished by measuring the flow
uniformity and homogeneity in the working section on planes normal to the flow and
in the longitudinal direction.

Two rakes of hot-wire probes were designed and used to measure velocity and
temperature simultaneously at five or six locations in the radial direction at a given
cross-section of the working section. Specially designed probes with high-frequency-
response pressure transducers were also used as Pitot tubes to measure the flow Mach
number at various locations in the flow field. These Mach number measurements were
compared to those obtained from hot wires. In addition, wall pressure transducers
located circumferentially at several positions around the same cross-section were used
to monitor the flow and the passage of shock or expansion waves.

Figure 5(a) shows time-dependent velocity traces obtained in the flow with the
3× 3 grid at Mflow = 0.321 at several radial locations spanning the whole diameter
of the shock tube at x/M = 50. The signals are non-dimensionalized by their average
value and they are displaced in the y-direction so that the arrival of incident and
reflected shock waves, as well as the corresponding velocity behind them, can be
easily observed. The flow immediately behind the incident shock, which has not
passed through the grid, is also evident in these signals. The major feature of this
flow region is its smaller velocity fluctuations compared to the fluctuations of the
grid turbulence flow which arrives at roughly t = 0.0095 s. These signals demonstrate
that the shock wave arrives at all sensor locations at the same time and therefore
they provide an indication that the shock is planar. They also demonstrate that the
grid flow remains stationary with their mean velocity traces very close to each other
suggesting a high degree of flow uniformity. As the Mflow increases, the duration
of useful data increases because the duration of flow which has not passed through
the grid is reduced proportionally to U−1 while the speed of the reflected shock is
not affected substantially. This is shown in figure 5(b) where the signals, obtained at
Mflow = 0.564, are plotted. The useful grid flow velocity appears to be about 10% less
than the velocity of the flow which has not passed through the grid. This is a result
of the upstream travelling reflected shock which was generated during the impact of
the incident shock on the grid. This weak disturbance reduces the flow velocity and
increases the turbulent fluctuations of the flow approaching the grid by a very small
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Figure 5. (a, b) Typical velocity traces at Mflow = 0.321 and 0.564; 3× 3, M = 8.5 mm. (c) Radial
distribution of mean velocity and turbulence intensity for the 3× 3 grid flow at Mflow = 0.321 and
0.564. (d) Flow inhomogeneity as a function of grid/mesh size. (e) Mean flow Mach number along
the working section. 3× 3 grid, M = 8.5 mm.

amount. The present work has shown that the flow downstream of the grid is nearly
homogeneous and isotropic despite this weak interaction.

Figure 5(c) shows the distribution of the mean velocity U1 and the turbulence
intensity u′1/U1 normalized by their average value U1,av and u′1,av respectively, at all six
locations. This is a typical example of flow uniformity for the case of the 3× 3 grid
with mesh size M = 8.5 mm obtained at two different Mach numbers at a distance
x/M = 50 from the grid. The standard deviation of all six values of mean velocity is
no more than 1% from U1,av while the standard deviation of the values of turbulence
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intensity is about 2% of average u′1,av . The data in figure 5(c) suggest a high degree of
uniformity of mean velocity and turbulence intensity in the radial direction. Similar
levels of uniformity of mean velocity, mean temperature and statistical moments
of their fluctuations have been observed through at least 85% of the area of any
cross-section.

In general, the degree of inhomogeneity could be better expressed in terms of

a scale of inhomogeneity defined as Lh = u2
i /∂u

2
i /∂x2 which should be compared

with the size of the energy-containing eddies L2 in the x2-direction. L2 is typically
a fraction of the mesh size M and it can be approximated by L2 ≈ M. The scale
Lh should be several times larger than L2 for the effects of flow inhomogeneity to
be ignored. Figure 5(d) shows the values of the ratio Lh/L2 for various grid mesh
sizes M for one low and one high Mflow . The higher the ratio the better the flow
homogeneity. The data show that the homogeneity improves with decreasing mesh
size M, i.e. finer grids have better flow homogeneity. The present data also show
that mean flow Mach number effects tend to decrease slightly the flow homogeneity.
Nevertheless even in the case of flows with coarse grids (M = 19 mm) Lh/L2 > 28, a
value which is considered adequate to assure that inhomogeneity in the present flows
has minimal effect in the evolution of turbulence.

The mean flow Mach number data at various locations along the working section
are also documented in figure 5(e) for three different flow fields. Values of Mflow have
been plotted against distance from the grid normalized by the length of the shock
tube L. It can be seen that the mean Mach number remained constant within 2.6%
in the case of the highest Mflow and within about 4% for the lowest Mflow .

In conclusion, it appears that the quality of the flow established in the shock tube,
in terms of uniformity of statistical averages, is very good. Thus the degree of near
homogeneity of the flow field, defined as invariance to translation, has been achieved
reasonably well.

5. The vorticity probe
A new multi hot-wire probe has been developed which is capable of measuring

velocity-gradient-related quantities in non-isothermal flows or in compressible flows.
The present probe has been built using the experience gained with vorticity measure-
ments in incompressible flows (see Honkan & Andreopoulos 1997) by a probe with
nine wires, and with velocity measurements in compressible flows by single- and cross-
wire probes (see Briassulis et al. 1995). The present vorticity probe, which consists of
12 wires is a modification of the original design by Honkan & Andreopoulos (1997,
hereafter referred as HA). The three additional wires were operated in the so-called
constant-current mode and used to measure time-dependent temperature.

Since the probe essentially consists of a set of three modules, it is necessary to
provide several key features of the individual hot-wire modules. Each module contains
three hot wires operated in the constant-temperature mode (CTM) and one cold-wire
sensor operated in the constant-current mode (CCM). Each wire of the triple wire
sub-module is mutually orthogonal to the other two, thus oriented at 54.7◦ to the
probe axis. Each of the 5 µm diameter tungsten sensors is welded on two individual
prongs which have been tapered at the tips. Each sensor is operated independently
since no common prongs are used. Each of the 2.5 µm diameter cold wires was located
on the outer part of the sub-module.

The hot-wire output voltage Ei of the ith sensor is related to the effective cooling
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velocity, Ui,eff through the well-known King’s law:

E2
i

Tw − T0

= Ai

[
T0

Tr

]a
+ Bi

[
T0

Tr

]b
(ρUi,eff)

n, (5.1)

where Tw is the hot-wire temperature, T0 is the total temperature of the flow and Tr
is a reference temperature, the ambient temperature in the present case. The values of
the exponents a and b were taken as suggested by Kovasznay (1950) a = b = 0.768.
The effective velocity is related to Ui,N , Ui,T and Ui,B , the normal, tangential and
binormal components of the velocity vector in reference to the ith sensor respectively,
by

U2
i,eff = U2

i,N + k2U2
i,T + h2U2

i,B , (5.2)

where k and h are coefficients which, for a given probe, depend on the yaw and
pitch angle of the velocity vector. Details of the techniques associated with the use
of triple-wire probes can be found in Andreopoulos (1983a) while estimates of errors
related to probe geometry and turbulence intensity are described by Andreopoulos
(1983b).

The probe, shown schematically in figure 6 consists of a set of three individual mod-
ules with four wire sensors each, put together so that the probe remains geometrically
axisymmetric.

In selecting the dimensions of the vorticity probe several conflicting considerations
have to be taken into account. The individual wire length, the size of the individual
sub-module and the size of the overall probe should be as a small as possible so
that small scales can be resolved adequately since it is known that most of the
contributions to vorticity come from small scales of turbulence. However, small wire
spacing can lead to thermal interference and cross-talk between the wires. This was
of particular concern in the present case because of the high overheat ratio used
in the experiments. Yaw and pitch tests of the probe were carried out in order to
identify any thermal effects on wires located in the heated wake of a neighbouring
wire located upstream. These tests indicated no thermal interference among the wires.
The reason for this behaviour is that the spreading rate of the thermal wakes is
reduced in high Reynolds number flows.

The requirement to reduce the probe size had to be counterbalanced with the
requirement that the spacing between the sub-modules and the individual wires
should be finite so that the velocity gradients, which were used to compute vorticity
and strain rates, do not disappear.

The present probe design differs from that used in HA in the following aspects:
(i) It consists of 12 wires with three of them measuring total temperature. The

capability to measure time-dependent total temperature makes the probe suitable for
measurements in non-isothermal flows while, at the same time, the availability of
temperature information allows decoupling of the velocity and density.

(ii) The overheat ratio in which the hot wires were operated was close to 130%.
This high overheat ratio was required in order to maintain the heat transfer rate from
the wire to the driven flow at substantial levels.

(iii) The diameter of the velocity sensing wires was 5 µm. This reduced the length-
to-diameter ratio of each wire to about 200 which is large enough to suppress end heat
conduction effects. Attempts to work with 2.5 µm wires were unsuccessful because of
substantial strain-gauging effects and wire breakage.

Velocity calibrations were carried out inside the shock tube by firing the tube at
various pressures corresponding to Mach numbers anticipated to be found in the
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Figure 6. Vorticity probe: (a) perspective view, (b) probe sensor geometry, (c) layout of probe
centroids, (d) photograph showing size comparison with toothpick, (e) close up view directly into
probe. (f) Typical hot-wire calibration. (g) Yaw response in shock tube and low-speed wind tunnel.

flows under investigation. Figure 6(f) shows a typical velocity (mass flux) calibration
carried out in this shock tube. Two sets of values of Ei, total temperature T0, pressure
p, and velocity U were obtained from each run: one set upstream and one downstream
of the reflected shock. The data downstream of the reflected shock front correspond
to a flow field with lower velocity and higher density than the flow field upstream.
The fact that both sets of data collapse on the same curve gives a strong indication
that the technique is valid. It should be noted that this technique was also applied
successfully to a flow with a strong turbulence–shock interaction carried out in a
smaller diameter shock tube (see Honkan & Andreopoulos 1992).

Yaw and pitch calibration of the probe was also carried out in-situ. These data help
to extend a complete and detailed map of the yaw and pitch response of the probe
obtained in a low-speed wind tunnel to the subsonic range of flow velocities needed
in the present investigation. Values of the coefficient h of equation (5.2) obtained in
the shock tube over a range of yaw angle from −10◦ to +10◦ are shown in figure
6(g). The data indicate that there is no appreciable change of h with yaw or pitch
angle in the Mach number range of flows considered here. This suggests that there is
no need to use iterations in the data processing to account for any dependence of h
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on yaw or pitch angle as has been demonstrated in the work of Andreopoulos (1981).
Calibration in yaw was not extended beyond the range of ±10◦ because the expected
range of the yaw or pitch angle of the velocity vector is in the same range since
turbulence intensity never exceeds 7%. It is also interesting to see that the values of
h obtained in the shock tube do not vary as much as the values obtained in the wind
tunnel and therefore are less sensitive to changes in flow direction.

The digitized signals were processed off-line. The cold-wire signals were first con-
verted to total temperature which together with the hot-wire signals were used to
obtain instantaneous three-dimensional mass fluxes at three neighbouring locations
within the probe. Numerical techniques and algorithms used in the computations of
velocity gradients were very similar to those described by HA. The only difference is
that in the present case mass fluxes and their gradients were computed at the centroid
of each module instead of velocities and velocity gradients.

Mass fluxes were further separated into density and velocity by using the method
adopted by Briassulis et al. (1996). Decoupling density from mass fluxes assumes
that static pressure fluctuations are small. This is the ‘weak’ version of the original
‘strong Reynolds analogy’ hypothesis of Morkovin (1956). The original hypothesis is
based on the assumption that pressure and total temperature fluctuations are very
small. In the present work, total temperature was measured directly and therefore
no corresponding assumptions were needed. The pressure, however, was measured at
the wall and not at the location of the hot-wire measurement. The mean value of
this pressure signal was used to separate the density and velocity signals since no
mean pressure variation has been detected across a given section of the flow. The
procedure involves an expression for mass flux, mi, in terms of total temperature, T0,
and pressure, p, at the centroid of each module:

mi = ρUi =
pUi

RT
=

pUi

R
[
T0 −UkUk/(2cp)

] . (5.3)

Ui is the instantaneous velocity component, i = 1, 2 or 3 and UkUk = U2
1 +U2

2 +U2
3 .

The velocity can be decomposed into Ui = Ui + ui.
An iterative scheme was used to decouple density and velocity. During the first

iteration it was assumed that the quantity (u2
2+u2

3)/2cp, where u2 and u3 are the velocity
components in the spanwise and normal directions respectively, is substantially smaller
that the quantity T0 − U2

1/2cp. Then relation (5.3) can be rearranged to obtain a
quadratic equation for Ui,

Rmi

2cp
U2
i + pUi − miRT0 = 0. (5.4)

For each digitized point, T0 and mi were available instantaneously at the centroid
of each module while pressure was measured at the wall. If the thin shear layer
approximation is invoked then the pressure at the centroid of the module which
appears in (5.4) can be substituted by the mean pressure at the wall. This assumption
is justified because pressure fluctuations are extremely small and therefore their impact
on velocity fluctuations is minimal.

The discriminant of (5.4), ∆ = p2 + 2m2
i R

2T0/cp, is always positive and therefore
there are two real roots. The product of the two roots, as expressed by the ratio of
the last term of the left-hand side of equation (5.4) to the coefficient of the first term,
is always negative. Therefore one root is positive and one negative. The negative
root is unrealistic and only the positive root was accepted. The longitudinal velocity
component U1 was computed first while the other two components were obtained
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from the mass flux ratios as u2 = m2/m1U1 and u3 = m3/m1U1. These values provided
the first estimate of the velocity components which were used to obtained a better
estimate of U2

k /2cp in (5.3), which subsequently was used to improve the estimate of
the velocity components. This iterative scheme required no more than two iterations
for convergence.

In summary, it should be emphasized that the major contribution of the present
hot-wire techniques is the addition of temperature wires to obtain instantaneous
information on total temperature. This allowed decoupling of all partial sensitivities
of the probe from each other. Thus, Sρ = ∂E/∂ρ 6= Sρu = ∂E/∂ρu 6= Su = ∂E/∂u.

6. Uncertainty estimates
The pressure and total temperature measurements depend directly, through ob-

tained calibration constants, on the raw voltage data from the individual sensors.
These probes, because of their linear response, produced two calibration constants,
sensitivity and d.c. offset. Therefore estimates of the uncertainty in the measurements
of pressure and total temperature acquired through a 12-bit A/D converter depended
mostly on the bit resolution and the residual errors from the calibration constants.
Uncertainties in the range of less than 0.5% in pressure and about 2% in total
temperature were found for typical measurements of these two quantities.

The mass flux measurements were tied to significantly more-complex relations
which depended on the individual and relative geometry of different sensors. Mass
flux was found to depend on the following variables: captured raw voltage Ei, reference
temperature Tr , total temperature T0, wire temperature Tw , calibration constants and
yaw or pitch coefficients. Estimates of the uncertainty in the measurements of mass
flux after considering all the above contributing factors was found to be 1–3%.
Uncertainty values for the velocity were estimated to be 1.5–3.5%. In obtaining all
these estimates the square root of the squares of all partial uncertainties involved was
assumed to model the error propagation in the final results. MATHCAD was used to
calculate the partial uncertainties.

Following the work of HA estimates of the uncertainties associated with the
measurements of velocity gradients were also obtained by considering the propagation
of the uncertainties in the measurement of each quantity involved in the process. A
typical velocity gradient is measured through the following approximation:

∂Ui

∂xj
≈ U2 −U1

lp
= F

where U2 and U1 are the velocities at two nearby locations and lp is the distance
between these locations. If the uncertainties in the measurements of U2 and U1 are the
same, ∆U1 = ∆U2 = ∆U, and lp is determined accurately, then the relative uncertainty
∆F/F will be given by

∆F

F
=

(
2

(
∆U

U2 −U1

)2
)1/2

.

A typical ∆U is 2% of mean U which corresponds to about 2 m s−1 while typical
velocity differences U2 − U1 can be up to six times the r.m.s. value, u′. If a typical
value of this velocity difference is assumed of about 30 m s−1 in the near field of the
grid and 15 m s−1 further downstream, then the uncertainty ∆F/F appears to be 10%
in the near field and 14% in the far field.
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Lower uncertainty estimates have been found if the relation

∂Ui

∂xj
≈ u′

λ
= F

is used for their computation. In this case the relative error is

∆F

F
=

((
∆u′

(u′)

)2

+

(
∆λ

λ

)2
)1/2

.

For a typical relative error in u′ of 5% and 10% in λ the relative error appears to be
about 11%. It should be note that the relative error ∆F/F increases as the distance
away from the grid increases because the absolute value of F decreases.

Finally the finite number of statistically independent events considered in the
analysis of data obtained at low Mflow and at large distances from the grid may
introduce an uncertainty in the statistical results. As mentioned before, the arrival
of the reflected shock affects first the measurement locations closer to the porous
endwall which are the furthest from the grid, by reducing the duration of useful
data. The onset of the useful data duration is also delayed by the arrival of air mass
which has not gone through the grid. Computations of the integral time scale Lt from
auto-correlation functions Ruu(τ) indicated that the number of independent samples
in these cases was about N ' 100. Bendat & Piersol (2000) indicate that the relative
error in the estimate of the variance of the velocity fluctuations is 2/N which for this
specific case at large x/M is 2%. It should be noted that N depends on Ruu which
can be extended to large values if low-frequency disturbances are present in the flow
fields which are not related to the actual flow turbulence. If a high-pass filtering at
200–400 Hz is applied to the present data Lt is reduced substantially and N increases
by a factor of 2. No such filtering has been applied to the present data other than
what is imposed by the record length. For 10 ms record length the lowest frequency
of interest is about 100 Hz.

Further direct evidence of the adequacy of statistical samples can be provided
by the rate of convergence of the various statistical quantities which are computed
in the present data analysis. As was shown earlier, estimates of the convergence
uncertainties observed in the present analysis indicate an error of less than 2%. This
error is substantially less at higher Mach numbers and closer to the grid locations.

7. Qualification tests
Assessment of the performance of the newly designed probe was accomplished by

carrying out measurements in the present compressible grid flow of the shock tube and
in a two-dimensional turbulent boundary layer configured in a low-speed wind tunnel.
In the first case, statistical averages of conventional quantities obtained with this
probe were compared directly with those obtained with single- or cross-wire probes.
Statistical quantities including velocity gradients, like the dissipation rate of turbulent
kinetic energy, were also compared whenever it was possible. These comparisons,
which are described later in the section on results, indicated that turbulent normal
stresses are within 8% of each other while the dissipation rate obtained with the
vorticity probe is about 5% to 15% higher than those obtained from the decay rate
of turbulent kinetic energy. This is the first evidence that the probe performs well in
the present compressible flow.
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Boundary layer Momentum Friction velocity
Ue (m s−1) thickness δ (mm) thickness θ (mm) Reθ uτ (m s−1)

9.1 97 9.21 5300 0.315

Table 2. Incompressible boundary layer flow parameters.

Dimension Resolution in Kolmogorov scales

Wire length ηw = 5
Separation of sub-modules in normal direction η∆x1 = 6
Separation of sub-modules in spanwise direction η∆x2 = 8

Table 3. Spatial resolution estimates in incompressible boundary layer experiment.

The probe was further evaluated by carrying out measurements of vorticity and
turbulent stresses in the incompressible boundary layer flow where the data of HA
were obtained. This allowed a direct comparison of the present data obtained at
Reθ = 5300 with the data of HA obtained at Reθ = 2800.

The bulk flow parameters of the boundary layer experiments are given in table 2.
The estimates of the flow scale resolution expressed in Kolmogorov microscale

(viscous scale) units are shown in table 3.
The performance characteristics of the present probe are demonstrated in figure

7 where the shear stress −ρu1u2 across the boundary layer, normalized by the wall
mean shear ρu2

τ , is plotted against the distance from the wall normalized by the
boundary layer thickness δ, x2/δ. Among all the turbulent stresses, shear stress is the
most challenging quantity to measure accurately. The reason is that it is sensitive to
small changes in probe alignment and experimental conditions which can increase
substantially the uncertainty of the measurements. The data presented in figure 7
are the averaged data obtained at the centroid of the probe. The present data are
compared with the measurements of HA, the data of Balint, Wallace & Vukoslavcevic
(1991) and the data of Klebanoff (1954) as well as with the direct numerical simulation
results of Spalart (1988). The present data seem to agree well with previous data in
the logarithmic and outer (x2/δ > 0.05) region of the boundary layer.

Figure 8 shows the distribution of the mean velocity gradient (∂U1/∂x2) across
the boundary layer as measured at the centroid of the probe by time-averaging its
instantaneous values. On figure 8 the mean velocity derivative in the logarithmic law
region, 1/κx+

2 , where κ is von Kármán’s constant, is also plotted for comparison. It
appears that the measured mean velocity gradient data are in very good agreement
with those obtained theoretically from the log-law. The present data are also in good
agreement with those of HA (not shown here) which were obtained in the same
facility at Re2 = 2790 which is considerably lower than the present value.

A comparison of the r.m.s. of fluctuations of the three vorticity components across
the boundary layer measured by the present probe with data obtained by other
investigators is shown in figures 9(a), 9(b) and 9(c). These data are scaled with the
boundary layer thickness δ and friction velocity uτ. The values are compared with
the DNS results of Spalart (1988) and the experimental results of HA, Balint et
al. (1991) and Lemonis (1995), for the three vorticity components. Additionally the
measurements of Klewicki (1989) are also indicated on the plots for the spanwise
component.
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The present data for ω1 are very close to those HA and of Balint et al. (1991).
These three experimental data sets, as a group, have values considerably greater than
the DNS results of Spalart (1988).

The present values of the r.m.s. of the normal vorticity component ω2 agree rather
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well with the data of Balint et al. and they are substantially lower than those of HA in
the outer part of the boundary layer x2/δ > 0.1 which agree with the measurements
of Lemonis (1995). The fluctuations of the dominant component of vorticity ω3 as
measured by the present probe compare well with the data of Balint et al.

It should be noted that there is a substantial difference in Reθ among all data sets
under consideration. The present data and those of Lemonis which correspond to
Reθ = 5300 and Reθ = 6500 respectively represent the higher Reynolds number data
for comparison while the DNS data of Spalart with Reθ = 1410 represent the lower
Reθ data. Several of the differences among the data sets can be attributed to Reθ effects
although it is not known how increasing Reθ will affect vorticity fluctuations and their
averages. It may be expected, for instance, that the r.m.s. of vorticity fluctuations will
decrease in the outer layer of the boundary layer as Reθ increases. Evidence to support
this argument can be found in the r.m.s. values of wall vorticity flux shown in HA,
which have one of the strongest Reynolds number dependence ever observed of any
quantity involving vorticity: for a factor of 3 increase of Reθ a decrease by a factor
5 in the r.m.s. of wall vorticity flux has been observed. This evidence points to a
tendency in which the r.m.s. of ω1, ω2 and ω3 are expected to decrease with increasing
Reθ . In fact the present data, if one limits the comparison to the HA data only, clearly
support this conclusion. This comparison is more meaningful because both data sets
were obtained in the same wind tunnel facility by almost identical techniques and
procedures. Thus, it is plausible to expect that the present data should be lower than
the data of HA because of Reθ effects.

The conclusion of the qualification tests of the newly designed vorticity probe is
that it performed very well in the measurements of mean and fluctuating vorticity
in turbulent boundary layers as well as in the measurements of shear and normal
stresses. Comparison of the data with previous measurements was very satisfactory.
This provided considerable confidence in the use of the probe in weakly compressible,
grid-generated turbulence.

8. Isotropic decay relations
Three characteristic regions can be found in the flow behind a grid. First is the

developing region close to the grid where rod wakes are merging and production of
turbulent kinetic energy takes place. This region is followed by one where the flow
is nearly homogeneous and isotropic but where appreciable energy transfer from one
wavenumber to another occurs. This region is best described by the power-law decay
of velocity fluctuations

u2

U2
= A

[ x
M
−
( x
M

)
0

]−n
, (8.1)

where A is the decay coefficient, (x/M)0 is the virtual origin, and n is the decay
exponent. The third or final region of decay is farthest downstream of the grid and
is dominated by strong viscous effects acting directly on the large energy-containing
eddies.

Decay laws for compressible homogeneous and isotropic turbulence have yet to
be established. However, relation (8.1) can be a starting point to consider possible
compressibility effects. The decay coefficient A, for instance, is strongly related to the
drag coefficient of the rods of the grid Cd (see Batchelor 1953) which becomes Mach-
number dependent in compressible flows. Thus it is reasonable to assume that A as
well as the exponent n and the virtual origin (x/M)0 are also Mach-number dependent.
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The turbulent or fluctuation Mach number Mt = qt/c̄ with qt = (uiui)
1/2, seems to be

the most appropriate parameter describing compressible turbulence. It is hypothesized
here, and it will proven experimentally, that Mach number fluctuations in weakly
compressible turbulence decay according to the power law

M2
t = B

[ x
M
−
( x
M

)
0

]−n
, (8.2)

where B = 3AM2
flow and B, (x/M)0 and n depend on the grid size and/or solidity,

mesh Reynolds number (ReM) and the mean flow Mach number Mflow , which simply
comprise the initial conditions.

9. Dissipation rate of turbulent kinetic energy
The transport equation for the instantaneous kinetic energy 1

2
UiUi in compressible

flows is

ρ
D( 1

2
UiUi)

Dt
= −Ui

∂p

∂xi
+Ui

∂τij

∂xj
, (9.1)

where τij is the stress tensor, τij = 2µSij +λδijSkk , and where λ is the second coefficient
of viscosity which is related to the bulk viscosity µb through λ = µb − (2/3)µ.

The above equation can be manipulated to yield

ρ
D( 1

2
UiUi)

Dt
=
∂(−pUj + τijUi)

∂xj
+ pSkk − τijSij , (9.2)

where the last term on the right hand side contains the dissipation rate of kinetic
energy, E, converted into thermal/internal energy. The term pSkk represents the work
done by pressure forces during compression or expansion of the flow. Both terms,
the dissipation rate E = τijSij and the pressure work term, also appear with opposite
sign in the transport equation for internal energy. While the dissipation rate is always
positive at any given point in space and time, the pressure–dilatation term can, in
principle, be positive or negative.

The dissipation rate is given by

E = τij
∂Ui

∂xj
= τijSij = 2µSijSij + λ

∂Uk

∂xk
δij
∂Ui

∂xj
. (9.3)

After invoking Stokes hypothesis which suggests that the bulk viscosity is negligible,
µb ≈ 0, the above equation becomes

E = 2µSijSij − 2
3
µ
∂Uk

∂xk

∂Um

∂xm
. (9.4)

The second term in the right-hand side of (9.4) represents the additional contribution
of compressibility to the dissipation rate of kinetic energy. This term disappears in
the cases of incompressible flows.

Since (∂Uk/∂xk)∂Um/∂xm = (∂Uk/∂xk)
2 this term is always positive; the negative

sign may erroneously suggest that compressibility reduces dissipation. This is incorrect
because the term SijSij also contains contributions from dilatation effects which can
be revealed if one considers

SijSij = 1
2
ΩkΩk +

∂Ui

∂xj

∂Uj

∂xi
, (9.5)

where ΩkΩk is the enstrophy rate. The second term in the right-hand side represents
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the inhomogeneous contribution in the case of incompressible flows. In the case of
compressible flows, terms related to dilatation can be extracted through(

∂Ui

∂xj

∂Uj

∂xi

)
=

(
∂Uk

∂xk

)(
∂Um

∂xm

)
+

[(
∂Ui

∂xj

∂Uj

∂xi

)
−
(
∂Uk

∂xk

)(
∂Um

∂xm

)]
. (9.6)

Then, the dissipation rate becomes

E = µΩkΩk + 4
3
µ
∂Uk

∂xk

∂Um

∂xm
+ 2µ

[
∂Ui

∂xj

∂Uj

∂xi
− ∂Uk

∂xk

∂Um

∂xm

]
or

E = µΩkΩk + 4
3
µS2

kk + 2µ

[
∂Ui

∂xj

∂Uj

∂xi
− S2

kk

]
. (9.7)

The second term on the right-hand side describes the direct effects of compressibility,
i.e. dilatation, on the dissipation rate. It is obviously zero in the case of incompressible
flows.

The first two terms on the right-hand side of (9.7) are quadratic with positive
coefficients and positive signs and they are, therefore, always positive. The last term
on the right-hand side indicates the contributions to the dissipation rate by the
purely non-homogeneous part of the flow. Its time-averaged contribution disappears
in homogeneous flows like the present one. This term, in principle, can obtain negative
values and thus it can reduce the dissipation rate. This does not violate the second
thermodynamic law as long as the total dissipation remains positive at any point in
space and time. It should be noted that the dissipation term appears as a source term
in the transport equation for entropy. In the present context we will try to evaluate
the contribution of the first two terms to the total dissipation as it has been computed
from our measurements.

It has been customary in the past, (see for instance Zeman (1990)) to decompose
E into a solenoidal part Es, which is the traditional incompressible dissipation, and
the dilatational part Ed. In this case

E = Es + Ed with Es = µΩkΩk + 2µ

[
∂Ui

∂xj

∂Uj

∂xi
− S2

kk

]
and Ed = 4

3
µS2

kk.

Since all the mean velocity gradients are zero in the present homogenous flow the
above can be transformed into

E = µωkωk + 4
3
µs2kk + 2µ

[
∂ui

∂xj

∂uj

∂xi
− s2kk

]
(9.8)

where the lower-case letters represent the fluctuating part only.
It is also useful to consider the time-averaged turbulent kinetic energy transport

equation. This is usually expressed in terms of the mass-weighted averages of Favre
(1965). In the present case, velocity fluctuations were decoupled from mass fluxes and
therefore the transport equation for turbulent energy (1/2)uiui will be used. However,
reference will be made to the mass-weighted averages when the order of magnitude
of various terms appearing in the equation is considered.

If V is the specific volume defined as V = 1/ρ then

1

V

DV

Dt
= Skk

and equation (9.1) can be transformed to yield the transport equation for 1
2
uiui after
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considering that mean pressure and velocity gradients are zero in the present flow:

Ūk

∂(uiui/2)

∂xk
= uiuiskk + pui

∂v

∂xi
− ∂vuip

∂xi
− ∂V̄ uip

∂xi
+ vpskk + V̄ pskk − ∂(uiuiuk/2)

∂xk

−uiτik ∂v
∂xk

+
∂vuiτik

∂xk
+
∂V̄ uiτik

∂xk
− vτijsij − V̄ τijsij . (9.9)

In the present context lower-case letters represent fluctuations about the mean,
which is denoted with an overbar. The first term on the right-hand side represents
production of turbulent kinetic energy by the fluctuating dilatation skk which, as
found in our measurements, is very small and it can be neglected. DNS results of
Lee, Lele & Moin (1993) in homogeneous and isotropic turbulence indicated that all
the pressure transport terms are negligible and they can be ignored. The turbulent
transport term ∂uiuiuk/∂xk and the viscous transport are also found to be negligible.
The work of Lee et al. refers to mass-weighted quantities while the present analysis
uses the specific volume as an independent variable. However their conclusions can
be extended to the present context if one considers the relation between fluctuating
density ρ′ and fluctuating specific volume v:

v =
−ρ′v̄ + vρ′

ρ̄+ ρ′
, V̄ =

1− ρ′v
ρ̄

.

If the time-average product of the two fluctuations is small, i.e. ρ′v � 1 then
V̄ ≈ 1/ρ̄ and v ≈ −ρ′v̄/ρ̄. These relations link the fluctuating and mean density with
fluctuating and mean specific volume and therefore the conclusions of Lee et al. can
be invoked to obtain

Ūk

∂(uiui/2)

∂xk
= pui

∂v

∂xi
+ vpskk + V̄ pskk − uiτik ∂v

∂xk
− vτijsij − V̄ τijsij .

Terms containing the fluctuating specific volume v or its derivative are also expected
to be small because they are of third order.

Therefore, for the present case of homogeneous turbulence

Ūk

∂(uiui/2)

∂xk
≈ V̄ pskk − V̄ τijsij . (9.10a)

As has been argued, the pressure–dilatation term in the absence of shock waves is
negligible and can also be ignored. Therefore

Ūk

∂q2

∂xk
≈ −V̄ τijsij , (9.10b)

where ε = Ē V̄ and q2 = (1/2)uiui.
Thus measurement of the convection of q2 by the mean flow can provide a good

estimate of the dissipative viscous term ε and its length scale Le through

−Ū ∂q
2

∂x
= ε =

(q2)3/2

Le
. (9.11)

Once the dissipation length scale is obtained then the dissipation rate ε as well
as the associated microscales (length, time, velocity) can be calculated. The above
equation can be transformed to the following relation by non-dimensionalizing with
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the mesh size M:

−εM
Ū3

=
3

2

∂(u2/Ū2)

∂(x/M)

3

2

(u2)
3/2

Le

[
M

Ū3

]
. (9.12)

The decay rate of equation (9.12) can be calculated using the coefficients of the power
law of equation (8.1). Substitution of (8.1) in (9.12) yields

ε = 3
2
nA
[ x
M
−
( x
M

)
0

](−n−1)

[
U3

M

]
(9.13)

where A is the decay coefficient, (x/M)0 is the virtual origin, n is the decay exponent,
U is the mean flow velocity and M the mesh size.

10. Dissipation rate estimates
The complete time-averaged dissipation rate of turbulent kinetic energy is, for the

present homogeneous and isotropic flow,

Ē = µωkωk + 4
3
µs2kk.

Direct evaluation of E requires simultaneous, highly resolved measurements of nine
velocity gradients at a given location of the flow field as has been described in the
previous section. This has been attempted at several locations in the present flow
field. Traditionally, for truly isotropic turbulent flows with moderate or low Mach

number fluctuations, the above relation is considerably simplified to ε = 15ν(∂u/∂x)2

(Tennekes & Lumley 1972). Thus in the present case the dissipation rate ε has been
computed by five different methods:

(i) From the decay rate of turbulent kinetic energy and the use of equation (6.12)
or (6.13).

(ii) From frequency spectra of velocity fluctuations after invoking Taylor’s hypoth-
esis to compute the three-dimensional wavenumber spectrum E(k). The dissipation ε
can be computed from the integral

ε ≈ 2ν

∫ ∞
0

k2E(k)dk. (10.1)

(iii) From estimates of (∂u/∂x)2 and the isotropic relation ε = 15ν(∂u/∂x)2. The

quantity (∂u/∂x)2 has been computed by differentiating in time the velocity fluctuation
signal and invoking Taylor’s hypothesis of frozen turbulence convection.

(iv) From estimates of Taylor’s microscale λ obtained from autocorrelations of
longitudinal velocity fluctuations. Then the r.m.s. of the fluctuations of the velocity

gradient (∂u/∂x)2 can be obtained independently from (∂u/∂x)2 = u2/λ2 and therefore
dissipation can be computed from ε = 15νu2/λ2.

(v) By direct measurement of all time-dependent velocity gradients and computa-
tion of all the terms appearing in (9.8). This method can also provide an assessment
of all the assumptions made in the previous methods of estimating ε. The estimates
usually obtained from these methods are not identical since the assumptions associ-
ated with, and the uncertainties involved in, each of them may differ considerably.
The lack of adequate spatial resolution is one of the major source of errors and affects
each estimate of ε differently. However, even in cases where the estimates of ε differ by
50% or more, the estimates of Le or Kolmogorov’s viscous scale η ≡ (ν3/ε)1/4 differ
only by 8.5% (see Andreopoulos & Honkan 1996). In the present case the estimates
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of ε obtained from the decay rate of q2 and those obtained from Taylor’s microscale
(autocorrelations) were the most reliable and very close to those obtained by method
(v). Based on these estimates of ε, the spatial resolution of the probe used in the
present investigation was between 7η and 26η, depending on the flow. If one considers
that the spatial resolution usually achieved in measurements of compressible flows is
of the order of 103η (see Andreopoulos & Muck 1987; Smits & Muck 1987) then the
present one appears to be very satisfactory. These values are also comparable to values
usually achieved in low Reynolds number incompressible flows. In the case of vorticity
measurements the spatial resolution was also in the range of 7η to 30η. However,
increasing evidence suggest that Taylor’s microscale λ and not η should be used to
evaluate the spatial resolution of probes (see Tsinober, Kit & Dracos 1992, and HA).
In this case the spatial resolution of the probe is between 0.6λ and 3λ and therefore
the expected attenuation of the measurement of vorticity r.m.s. is not very significant.

11. Flow homogeneity and isotropy
The flow visualization experiments and quantitative analysis of velocity and tem-

perature obtained at different locations simultaneously across a section of the tube
indicated that the flow is homogeneous within 85% of the diameter. Evidence of the
flow quality was provided in § 4 while a full documentation of the flow quality in the
shock tube is provided by Briassulis et al. (1995).

The flow isotropy was verified directly and indirectly. Direct verification is provided
by computing the anisotropy tensor bij of the velocity field:

bij =
uiuj

uiui
− 1

3
δij , (11.1)

where u is velocity fluctuation about the mean and δ is the Kronecker delta. Generally,
grid-generated turbulence tends to be anisotropic with the streamwise component
slightly larger than the cross-stream components. Compte-Bellot & Corrsin (1966)
were able to generate turbulence very close to an isotropic state by introducing a
contraction after the grid. However, in most experiments where isotropic turbulence
has been configured by using biplane grids all turbulent quantities have been found
to agree reasonably well with isotropic conditions at sufficiently large distances from
the grid, even with the presence of slight anisotropy which usually decreases with
downstream distance from the grid.

The present data, shown in figure 10, suggest a rather good degree of isotropy,
with minor variations, well within established margins. For comparison it should be
mentioned that for boundary layers b11 = 0.45 and b12 = 0.15. Anisotropy of the
present flow field is compared with one of the latest and most complete studies, that
of Tsinober et al. (1992) in incompressible flows. It appears the values of bij in the
present experiment are confined within the band ±0.075 in the region 30 < x/M < 60
and within the band ±0.035 in the region 65 > x/M. It is also evident from figure
10 that the degree of flow isotropy achieved in the present flow configuration is
slightly better than that of Tsinober et al. (1992). Both data sets show that anisotropy
decrease with downstream distance.

The anisotropy of the vorticity field is also shown in figure 10. The anisotropy
tensor for vorticity is defined similarly as

cij =
ωiωj

ωiωi
− 1

3
δij . (11.2)
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Figure 10. Anisotropy tensors bij (velocity field) and cij (vorticity field).

Values of cij are compared with the vorticity data of Tsinober et al. (1992). Our
present vorticity data indicate that the anisotropy of the flow is well within the
established limits. The reasonably low values of the anisotropic tensors bij and cij ,
shown in figure 10, establish the isotropic nature of the present flow generated in the
shock tube.

Indirect evidence of isotropy was provided by considering the skewness of velocity
fluctuations and the skewness of velocity derivative (Tavoularis et al. 1978; Mohamed
& LaRue 1990).

Figure 11 presents the skewness of velocity fluctuations for three mean flow Mach
numbers obtained in the experiments with the 5× 5 (M = 5.08 mm) and 3× 3
(M = 8.5 mm) grids. It appears that Su remains constant and close to zero for all
measured downstream locations. The data of Su obtained with the 12-wire probe are
also plotted for comparison with those obtained with x-wires. These values are also
close to zero.

The skewness of the velocity derivative S∂u/∂x represents the average rate of produc-
tion of mean-square vorticity by vortex stretching (Batchelor 1953) and it is related,
according to Tavoularis et al. (1978), to the spectral energy transfer which depends
on the turbulent Reynolds number, Reλ. Computations of S∂u/∂x indicated that the
results are affected by the numerics of the algorithm used to evaluate ∂u/∂x or ∂u/∂t.
In order to avoid excessive spikes and overshoots in the signal, the central-difference
numerical scheme was used to compute ∂u/∂t, which required the use of three se-
quential digital points. However, very high rates of data sampling were required in
the present experiments in order to capture accurately the arrival of the incident or
reflected shock waves. This created over-sampled turbulence data which biased the
computation of S∂u/∂x. In order to demonstrate the effects of sampling rate on S∂u/∂x
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Figure 11. Skewness of veloctiy fluctuations for three different flow fields.

adjustable sampling was performed by skipping data points in the computations.
Taylor’s hypothesis was used to convert the time interval between measurements ∆t
to spatial distance ∆x. Figure 12(a) shows the effect different effective sampling has
on the value of S∂u/∂x for three Mflow . Values of ∆x have been non-dimensionalized
by the corresponding Taylor microscale λ of each flow field. It has been found in
the past by Tsinober et al. (1992) and HA that the most appropriate scale for the
statistics of velocity gradients is λ, which also represents the smallest scale to resolve
for reliable measurements of these velocity gradients. It is therefore appropriate to
adopt the value of S∂u/∂x at ∆x = λ as the most plausible value.

Tavoularis et al. (1978) presented a comprehensive study of values of the skewness
of velocity derivative for a variety of flow fields and Reλ. From this study, if one
considers the data obtained from isotropic grid turbulence, it can be observed that
S∂u/∂x decreases with Reλ for Reλ > 5. The theoretical analysis of George (1992)
also suggests that S∂u/∂x varies as Re−1

λ . Typical values for S∂u/∂x are shown in figure
12(b) for three different flow cases of the present investigation together with values
obtained by other researchers in various turbulent flow fields. Since λ increases with
distance from the grid the values obtained in the present investigation and shown in
this figure represent the average value of all the measured values downstream of the
grid for a given experiment. The values obtained are between 0.2 and 0.4, a range
which is lower than the S∂u/∂x value at Reλ ≈ 5.

The self-preservation theory of George (1992) suggests that the value of the product
S∂u/∂x Reλ depends on initial conditions and asymptotically should vary as Re

1/2
M as it

has also been proposed by Batchelor & Townsend (1947). Figure 12(c) shows values
of the ratio S∂u/∂xReλ/Re

1/2
M plotted against ReM for three different Mach numbers,

Mflow , computed from measured data obtained in the present investigation. The
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data show that this ratio maintains a reasonably constant value which depends on
Mflow . For the lowest Mflow = 0.3 this value appears to be 0.28 on average, while for
Mflow = 0.475 it increases to a new level of 0.32. The value of the constant reduces to
0.21 for Mflow = 0.6. It should be noted that the data of Batchelor & Townsend show
that the asymptotic value of this constant is 0.12. The apparent difference between
the present data and those of Batchelor & Townsend may be due to the fact that
all flow cases investigated in the present work can be considered compressible. Thus
compressibility may increase the value of this constant. The self-similarity theory of
George (1992) has been developed for incompressible flows. It remains to be seen
whether self-similarity is an attainable state of compressible turbulence. The fact that
there is a constant value of the ratio S∂u/∂xReλ/Re

1/2
M for each Mflow suggests that

self-similarity theory may be extended to weakly compressible turbulence. It should be
noted that in the present approach an attempt has been made to identify the effects of
flow Mach number on S∂u/∂x by considering that Mflow is part of the initial conditions.
Another approach could be to only consider the data obtained with the same grid.
Figure 12(c) also shows the same data as before with dashed lines connecting data
points corresponding to the same grid. This type of interpretation ignores the effect

of flow Mach number and the data clearly show that the ratio S∂u/∂xReλ/Re
1/2
M is not

constant. Both interpretations of the present data clearly demonstrate that the theory
needs modification to account for the effects of compressibility.

It can therefore be concluded from all the results presented in this section that
direct and indirect evidence exists to support the argument that the present flow is
nearly homogeneous and isotropic.

12. Decay of turbulent kinetic energy and Mach number fluctuations
In general, it is expected that turbulence quantities downstream of the grid will

depend on the grid itself which is characterized by its shape and geometry, including
solidity, σ, and mesh size, M, and the initial conditions which include the Reynolds
number based on mesh size ReM and flow Mach number Mflow downstream of the
grid. It is not always possible to separate the effects of each of σ,M/ReM or Mflow

on flow quantities, from each other.
The typical decay of turbulent kinetic energy data with x/M was fitted with the

power law of equation (8.2). It should be noted that this relation which describes
the decay rate of turbulence is based on entirely empirical grounds. In the early
experiments of Simmons & Salter (1934) and Dryden (1943) the decay rate of
turbulence was found to be inversely proportional to x− x0. Subsequent experiments
by Corrsin and co-workers indicated that the decay rate described by (8.1) provides
a better fit to the experimental data with n in the range of 1.1 to 1.35.

In the present work, the variables A, (x/M)0, and n were determined so that
the residual deviation from the original data is minimized. Thus all variables were
determined concurrently under the condition of minimum deviation. In that respect
this approach represents a departure from previous practice where only two of the
three parameters were determined through a best fit procedure while the third one
was fixed. An exception to this past practice is the work of Mohamed & LaRue
(1990). A consequence of this approach is that n can reach any positive value and
not only values > 1 as usually is the case in previous works.

A sensitivity analysis was carried out to demonstrate how uncertainties in the
measurements could affect the values of A, (x/M)0, and n and the estimates of
dissipation rates and length scales obtained through the power law. The Appendix
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gives the analysis and provides estimates of the expected variation in the values of
these quantities. This analysis has indicated that a 10% variation in q2 results in
a 10% variation in ε, 5% variation in Le and 3% variation in λ. In general, the
present flow parameters remain within reasonable limits of variation even when the
power-law decay coefficients were allowed to vary in an arbitrary manner.

It should be emphasized that the applicability of the empirical power-law decay
does not necessarily imply isotropy. Thus the data used for the best fit procedure
not only had to obey the power law but also to be in the region where nearly
isotropic conditions hold. Thus not all experimental data were considered in the
determination of A, (x/M)0, and n. In several experiments, the point closest to the
grid had to be excluded because the isotropy requirements were not satisfied. The
criterion used to determine the degree of flow isotropy was based on the values of the
anisotropy tensors in a particular experiment like those shown in figure 10. Values
of the anisotropy tensor bij were available for all experiments while values of cij , the
vorticity anisotropy tensor, were available for a few cases only.

The present work documents the effects of the mesh size/mesh Reynolds number
as well as the flow Mach number on the quantities A, (x/M)0, and n. The importance
of these parameters is evident when one considers (9.13). Once these parameters
are available the dissipation rate of turbulent kinetic energy ε, the corresponding
dissipative length scale Le and Taylor’s microscale λ can be computed.

Several grids were used in the present experiments so that the Reynolds number
based on the mesh size ReM , as well as the dominant length scales present in the flow,
can be varied. The mesh Reynolds number ranged from 35 000 to 600 000 while the
mesh size ranged from 3 to 25 mm. The Reynolds numbers achieved in the present
investigation are amongst the highest ever attempted in laboratory configurations of
nearly homogeneous and nearly isotropic turbulence. Measurements were obtained at
three different driver pressures/shock strengths. The bulk parameters of all flow cases
are shown in table 1. The grids in terms in their solidity σ can be classified in three
different groups. The low solidity group with σ = 0.26 is composed of the 1.33× 1.33
grid only. The medium solidity group contains three grids, the 5 × 5, the 3 × 3 and
the 2×2, each with solidity very close to each other and within 2.5% of their average
value of σ = 0.38. The last group contains the 4× 4 grid only, with solidity σ = 0.44,
which is the highest used in the present experiments.

Figure 13(a) demonstrates the power-law decay behaviour of the measured data as
described by equation (8.2). The results of nine experiments are plotted in logarithmic
scales in this figure. They include three different grids at three different pressures/mean
flow Mach numbers which are in the subsonic range of 0.3 6 Mflow 6 0.6, placing
the flows in the weakly to moderately compressible regime. These grids have approx-
imately the same solidity, σ = 0.38.

Several conclusions can be drawn from these data. First those shown in this log-log
plot indicate that Mach number fluctuations Mt decay with downstream distance
x/M according to the proposed power law

M2
t = B

[ x
M
−
( x
M

)
0

]−n
. (12.1)

Second, the exponent n and the constant B depend on the grid, Mach number or
ReM . Third, the region where isotropy starts depends more on the grid for a given
solidity than on the flow Mach number or ReM . The onset of isotropy is delayed for
fine grids, i.e. grids with small mesh size M. It also appears that Mt increases with
increasing Mach number of the flow, Mflow , in all experiments with the same grid.
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Figure 13. Mach number fluctuations for various experiments with (a) grids of nearly the same
solidity of σ = 0.38 and (b) grids of various solidity. (c) Typical turbulent Mach number fluctuations
at x/M = 60 against Reλ.
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This behaviour is more evident at downstream positions with x/M > 30. Mach
number fluctuations, Mt, for a given Mflow also increase with increasing mesh size.

In order to identify the effects of solidity on Mach number fluctuations, the data
of the three major solidity classes have been plotted separately in figure 13(b). The
3× 3 grid has been chosen as a typical of the medium solidity group. The results of
the Mach number fluctuation decay show that isotropy starts sooner at low solidity
grids with σ = 0.26 rather than at grids with high σ. The data also show that there
is no apparent trend of how Mt changes with σ at constant Mflow . There is, however,
evidence that Mt increases with increasing Mflow at constant σ, except for the 4×4 grid
where the values of Mt are about the same at the two highest Mflow . Unfortunately
no combination of grids could be obtained so that the effect of solidity σ on Mt could
be considered at constant mesh size M.

Figure 13(c) shows a typical variation of the Mach number fluctuations obtained in
the present investigation with Reλ at x/M = 60, a location where turbulence appears
to be homogeneous and isotropic in all experiments carried out at various mean flow
Mach numbers Mflow . Mt and Reλ are two independent variables used frequently
in DNS to characterized the isotropic turbulence instead of Mt and ReM , which
are used mostly in experimental research where grids are used to generate isotropic
turbulence. The present data demonstrate a general trend showing that Mach number
fluctuations increase with increasing Reλ, a finding which has also been supported by
DNS observations.

In the following an attempt has been made to investigate the effects of Mflow and
ReM on B, n and x0 which appear in (12.1). The effect of ReM or M on the coefficient
B for three different Mach numbers is shown in figure 14(a). It should be mentioned
that the coefficient B shown above is related to the coefficient A of the velocity
fluctuation power-law decay through the relation B = 3AM2

flow which clearly suggests
that B depends on M2

flow . In addition to this rather obvious dependence of B on Mflow ,
there is the yet unknown Mach number dependence of A. This is shown in figure
14(b) where the effects of ReM or M on the coefficient A for three different Mach
numbers is demonstrated. Reynolds number variation was produced by changing the
mesh size under a relatively constant velocity, i.e. Mach number Mflow .

For the lowest velocity flow field tested (U ≈ 120 m s−1), which corresponds to a
mean flow Mach number of 0.30, the decay coefficients A or B, which are proportional
to each other at a specific Mflow , increase in a nonlinear fashion with increasing mesh
size M or ReM as shown in figure 14(a). As the Mach number increases, B is
substantially decreased and it appears to be independent of mesh size. The same
holds for the highest Mach number tested, where the decay coefficient is further
suppressed. It can be concluded that the decay coefficient A or B decreases when the
flow Mach number increases and that it is independent of the mesh size M and Mflow

at high Mflow .
In the above discussion the effects of grid solidity, σ, on B or A, in addition to

the effects of Mflow and ReM , was not considered. If the three grids which have the
same solidity are considered then the effects of Mflow and ReM on B or A will be the
same as previously described and all the conclusions made above will still be valid.
An attempt has been made, however, to assess independently the effects of solidity
on B or A by assuming that the dependence of σ on the resistence or static pressure
drop coefficient, K , is the same as in the case of fine screens (see Laws & Livesey
1978; Groth & Johansson 1988):

K = f(Red)

[
1

(1− σ)2
− 1

]
, (12.2)
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Figure 14. (a) Decay coefficient B and (b) decay coefficient A vs. ReM for three different Mach
numbers. (c) Effects of ReM and Mflow on function f(ReM,Mflow) = A/Fσ . (d) Virtual origin and
(e) decay exponent n vs. ReM for three different Mach numbers.

where f is a function depending only on the Reynolds number based on the rod
diameter, Red. It is known that A is proportional to K for fine screens and therefore
the above relation can be extended into compressible flow cases to yield

A = f(ReM,Mflow)Fσ, (12.3)

where Fσ = [1/(1 − σ)2 − 1] is the function which describes the effects of σ. Typical
values for Fσ are 0.86 for the 1.33× 1.33 grid, 1.68 for the 3× 3 grid and 2.188 for
the 4× 4 grid. Thus the values of A will not be substantially affected if the effects
of solidity have to be taken into account. Figure 14(c) shows the dependence of the
function f(ReM , Mflow) = A/Fσ on ReM , and Mflow . These data indicate that qualita-
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tively A and f(ReM,Mflow) exhibit the same ReM and Mflow effects. Quantitatively, the
data show some differences between them which cannot be considered as substantial.

It should be noted that the values of f(ReM,Mflow) obtained in the present inves-
tigation at rather high Reynolds numbers could not be directly compared with the
low Reynolds data reported by Groth & Johansson (1988) for fine grids because of
the large difference in Red.

In the past, it has been demonstrated that only the coefficient A depends on solidity.
If this behaviour is assumed to be valid in the present case then the exponent, n, and
the virtual origin, (x/M)0 will depend on ReM , and Mflow only. In the following, the
effects of ReM and Mflow on n and (x/M)0 will be demonstrated.

The virtual origin (x/M)0 strongly depends on the mesh size/ReM . This is shown
in figure 14(d) where the position of the virtual origin is plotted against ReM for a
constant Mach number flow for three different flow Mach numbers. In all cases it
was observed that the virtual origin approaches the grid as the mesh size or ReM
increases.

The effects of the Mach number at a particular ReM can also be seen in figure
14(d). The virtual origin is strongly affected at the highest Mach number only, while
for the medium and low Mflow cases it is moderately affected. At the highest Mach
number where the associated compressibility effects are expected to play a bigger
role, the virtual origin moved further away from the grid at a given ReM . It is also
interesting to observe, in the same figure, that this effect is diminished for the largest
mesh size grid. Namely, the virtual origin at high ReM appears to reach the same
normalized value of about 5 for each of the investigated Mach numbers.

The decay exponent n, shown in figure 14(e), is also substantially affected by the
Mach number of the flow field. It is clear from this figure that n is decreasing with
increasing Mach number. The effect of the mesh size on the decay exponent can also
be observed. It behaves similarly to the decay coefficient A. Namely, for the lowest
Mach number it increases with increasing mesh size/ReM . That means that for finer
grids, i.e. of small mesh size, there are larger decay rates than for coarser grids. At
a first glance this statement appears to contradict previous notions based on fixed-n
fitting of the data, but if we consider equation (9.13) then the dissipation rate ε is
proportional to nA[(x/M)− (x/M)0]

−(n+1). Thus ε will increase if n decreases.
When the Mach number increases the decay exponent n decreases substantially.

From a value of 0.8 at Mflow = 0.3, for instance, n drops to 0.3 at Mflow = 0.6 in the
case of ReM = 200 000. This is a reduction in the decay of more than 60% for a 100%
increase in Mach number. Thus, it appears that the major effect of compressibility
is a substantial reduction in the decay rate. The second interesting behaviour of the
exponent n is that at high Mflow it remains almost independent of ReM where it
reaches a value of about 0.3.

A typical decay of velocity fluctuations, as fitted by the power law, for the 5.08 mm
mesh size grid is shown in figure 15. The velocity fluctuations are higher at higher
Mach numbers which also correspond to higher ReM . The effect of higher velocity
fluctuations cannot simply be attributed to the increase of the mean Mach number
and the associated compressibility effects of the flow but also to the increase of
ReM . Although Mach number and Reynolds number are two different independent
variables they may cause quite similar effects on the flow which may be difficult
and sometimes impossible to distinguish clearly from each other. A 4-fold increase
in pressure, for instance, which corresponds to 100% change in Mach number and
Reynolds number, results in a 3-fold increase in the Mach number fluctuations Mt,
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Figure 15. Decay of velocity fluctuations for various Mach numbers; M = 5.08 mm.

throughout the entire flow field. Most probably this increase in Mt and (u/U)2 can
be attributed to both parameters, i.e. Mflow and ReM .

An attempt has made to identify the effects of Mflow and ReM on Mt, ε, Le and λ in
several of the present cases, by considering the dependence of the power law decay
coefficients on Mflow and ReM shown in figure 14(a–e). In order to explore how q2

or M2
t will change with Mflow or ReM , the partial derivatives (∂M2

t /∂Mflow)|ReM or
(∂M2

t /∂ReM)|Mflow
must first be evaluated. Differentiation of (12.1) yields

1
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The experimental data shown in figure 14 indicate that (∂B/∂Mflow) < 0,
(∂n/∂Mflow) < 0 and (∂(x/M)0/∂Mflow) > 0. Thus the relative magnitude of the three
terms in the right-hand side of (12.4) will determine the sign of (∂M2

t /∂Mflow)|ReM .
It appears that the first term is always negative and the last two terms are always
positive. The above derivatives were numerically calculated and it was found that
(∂M2

t /∂Mflow)|ReM > 0 in any flow with [x/M − (x/M)0] > 60 through the range
of Mach numbers investigated here. This finding agrees well with the data shown
previously in figure 13(a), where it was shown that Mt fluctuations increase with
Mflow .

Similarly to (12.4) the other partial derivative can be estimated:
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The present data show that (∂B/∂ReM) > 0 and (∂n/∂ReM) > 0 for Mflow = 0.3 and
that both (∂B/∂ReM) ≈ 0 and (∂n/∂ReM) ≈ 0 for the higher Mflow . The data also show
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that ∂(x/M)0/∂ReM < 0 for all Mflow . Consequently it appears that ∂M2
t /∂ReM |Mflow

is positive at low Mflow and slightly negative at high Mflow .
The availability of values of the partial derivatives at several values of ReM and

Mflow allows us to evaluate contributions to changes in M2
t which are caused by ReM

effects and/or by Mflow effects through the relation

∆M2
t = [∂M2

t /∂Mflow]∆Mflow + [∂M2
t /∂ReM]∆ReM. (12.6)

The data show that ReM effects are about the same order of magnitude and of the
same sign as Mach number effects at low Mach numbers and low ReM . They diminish
gradually as Mflow and ReM increase, as is evident from the data of figure 14(a). Thus,
in most cases, compressibility effects prevail over Reynolds number effects at high
Mflow and high ReM .

13. Dissipation rate and length scales
Figure 16(a) shows the dissipation rate of kinetic energy ε for one grid (5× 5) with

mesh size M = 5.08 mm at different flow Mach numbers. Two dissipation datasets
are shown in this figure, which have been computed by two different methods. In the
first method, ε has been determined from the decay rate of turbulent kinetic energy
by using equation (9.13). The second set of dissipation data has been computed from
the dissipation spectra calculated through the relation (10.1). The two datasets agree
reasonably well with each other, particularly in the far field.

From the data shown in figure 16(a), it appears that ε increases with increasing
Mach number in all investigated flows with the M = 5.08 mm grid. This behaviour
is quite similar to that of the decay of q2. Dissipation varies proportionally to x−n−1

while q2 varies as x−n. It remains to be seen whether this is a Mach number effect or
is due to Reynolds number increase.

The data shown in figure 16(a) are non-dimensionalized by M/U3
1 and replotted in

figure 16(b) where the same behaviour can be observed: non-dimensional dissipation
increases with flow Mach number Mflow . However, in the case of coarser grids
non-dimensional dissipation εM/U3

1 is decreased with increased Mflow . Figure 16(c)
shows values of the non-dimensional dissipation for the case of the 2 × 2 grid with
M = 12.7 mm and the same solidity as the 5 × 5 grid. These data demonstrate that
dissipation is reduced when the flow Mach number increases in the case of coarse
grids. As will be seen later, direct measurements of dissipation also confirm this
conclusion.

The difference between coarse and fine grids as to how the dissipation εM/U3
1

varies with Mflow can be attributed to the effects of ReM in addition to the obvious
reason of grid dependence. It should be noted that in the case of the fine grids with
M = 5.08 mm ReM reaches values from 59 000 to 102 000 while in the case of the
coarser grids with M = 12.7 mm ReM reaches values from 137 000 to 260 000.

The dissipation rate of kinetic energy ε for various mesh sizes is shown in figure
17 for the highest Mach number tested. In this figure the effects of ReM or M at
a fixed flow Mach number, Mflow , are depicted. The data in figure 17 suggest that
coarser grids, i.e. higher ReM , produce lower dissipation rates, ε, at constant Mflow

when compressibility effects are high. In the absence of large compressibility effects,
which are typical in the lowest Mach number flow fields tested, the reverse influence
of the mesh size on ε can be found as shown in figure 18. In this figure, dissipation
data non-dimensionalized by the mean velocity and mesh size for the lowest Mach
number flow field tested, Mflow = 0.35, is plotted for various mesh sizes. The reverse
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Figure 16. (a) Dissipation rate of kinetic energy (for M = 5.08 mm), and (b, c) non-dimensional
dissipational dissipation rate for M = 5.08 and 12.7 mm, respectively, vs. x/M for three Mach
numbers.
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Figure 17. Dissipation rate of kinetic energy for various mesh sizes. Mflow = 0.6.
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Figure 18. Non-dimensional ε for Mflow = 0.35 and various mesh sizes.

trend is observed for εM/U3 in the absence of strong compressibility effects. In this
case, the coarser grid with the largest mesh size and highest ReM shows the largest
non-dimensionalized dissipation rate of kinetic energy. Since the mean flow field
velocity U is equal for all cases plotted the effect presented in this figure is mainly
due to the Mesh size M and ReM .

Figure 18 also shows the dissipation rate data obtained with the vorticity probe.
In this case the total dissipation rate was computed directly from the measured time-
dependent velocity and density gradients. These data appear to be 5% to 15% higher
than the data obtained from the decay rate of turbulent kinetic energy. This difference
is well within the experimental uncertainty associated with the measurements of
dissipation.

The data shown in figure 17 are non-dimensionalized with M/U3 and replotted in
figure 19. The effect of compressibility is rather striking at this Mflow = 0.6 and the
results consistently indicate that εM/U3 increases with decreasing mesh size/ReM .

Even in the case of the medium Mach number flow field tested, compressibility
effects can be observed in the dissipation data shown in figure 20. These data also
demonstrate that the coarser grids with the greater mesh sizes and higher ReM flow
field produce a lower dissipation rate, ε. The dissipation rate of kinetic energy for
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Figure 20. Dissipation rate of kinetic energy for various mesh sizes at Mflow = 0.475.

the medium Mach number follows the trend that exists for the highest Mach number
and therefore suggests that the presence of compressibility effects are felt in this flow
field too. The quantitative difference of the degree of compressibility effects between
Mflow = 0.6 and Mflow = 0.475 flow fields can be estimated upon closer observation of
the data shown in figures 17 and 20. For almost a 4-fold increase in the mesh size and
ReM the dissipation rate decreased 10 times for Mflow = 0.6 and approximately 5 times
for the Mflow = 0.475 flow field. This behaviour also suggests that, as expected, higher
Mach number flow fields introduce higher compressibility effects on dissipation.

The result of single measurement of total dissipation obtained with the multi-wire
vorticity probe is also plotted in figure 20. The measurements were obtained in the
flow with the M = 12.7 mm grid and with Mflow = 0.425 which is lower than the flow
Mach number of the rest of the data. This value of dissipation rate is also slightly
higher than the values obtained from the decay rate of turbulent kinetic energy.

The present measurements indicate that, in addition to the particular grid used to
generate the flow and the Reynolds number ReM , dissipation rate depends also on the
flow Mach number Mflow . Following the same reasoning as in the previous section,
the change in dissipation ∆ε can be decomposed into the two contributions

∆ε = [∂ε/∂Mflow]∆Mflow + [∂ε/∂ReM]∆ReM. (13.1)
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Figure 21. Dissipative length scale for three mean flow Mach numbers. M = 12.7.

The present experimental data show that the changes due to Mflow effects dominate
the behaviour of (13.1). It appears that ∂ε/∂Mflow < 0 in the low Mflow range
from 0.3 to 0.47 and ∂ε/∂Mflow > 0 in the high Mflow range from 0.47 to 0.6. The
partial derivative is positive, ∂ε/∂Mflow > 0 at Mflow = 0.3 and ∂ε/∂Mflow < 0 at
Mflow = 0.47 or higher. The data of figures 17, 18 and 19 verify this behaviour.

Similar considerations can be used to find the dependence of the dissipative length
scale Le on Mflow and ReM . A summary of the present findings can be found in
table 5 in § 15.

The dissipation length scale Le indicates how fast the advected turbulent kinetic
energy q2, at a given location, is dissipated into heat. It is a longitudinal length scale
since advection of q2 in the present flow takes place only in the longitudinal direction.
As Mach number increases the results of the present investigation show that the
dissipative length scale Le increases, although the dissipation rate of turbulent kinetic
energy, ε, also increases for a given mesh size (see figure 16). This increase in Le is
attributed to the increase in q2 with Mach number, which apparently is larger than
the corresponding increase of ε.

A typical result is shown in figure 21. These data correspond to the three flow
fields with different Mach numbers and are obtained with the same grid of mesh
size M = 12.7 mm. It is interesting to observe that for the highest mean flow Mach
number the dissipation length scale grows faster, and reaches values much greater,
than the medium Mach number flow case. This behaviour can be attributed to higher
compressibility and higher ReM effects which can cause such a drastic increase. In
the case of fine grids (not shown here), however, the trend observed is reversed: the
dissipation length Le decreases with increasing Mflow . For both grids, i.e. the 5 × 5
and the 4 × 4 with M = 5.08 mm and M = 6.35 mm respectively, Le decreases with
Mflow . The data indicate a fast dissipation process in flows produced by fine grids.

The effect of the grid mesh size on the dissipation length scale is shown in figure
22. The dissipation length scale Le increases with increasing mesh size and ReM . From
this figure it can be seen that for the same mean Mach number a 5-fold or more
increase in Le occurs for a 3-fold increase in the mesh size/ReM . Thus the pivotal
effect that the grid size exerts on the length scales in the flow field is that coarser grids
result in longer Le. It is also apparent from both previous figures that the dissipation
length scale strongly depends on x/M and that it increases with downstream distance.



Structure of weakly compressible grid-generated turbulence 261

Mflow = 5.08 mm
6.35 mm
12.7 mm
19.1 mm

0.20

0.16

0.12

0.08

0.04

0 40 80 120 160 200

x /M

L
e 

(m
)

Figure 22. Dissipative length scale for several mesh sizes. Mflow = 0.475.

The data presented in figure 21 for the highest Mach number flow field shows large
values of Le which are indicative of a very slow dissipation process. These values
exceed the shock tube diameter D = 0.305 m at distances x/M > 130 and at about
x/M = 200 reach values of Le = 0.5 m = 1.63D. In general, it is expected that at large
distances from the grid the growth of eddies due to amalgamation will be affected
by the cross-sectional size of the facility which in the present case is described by the
diameter D. This requires that at any point in the flow the lateral length scale L22

should be smaller than D. Since L22 is related to the mesh size of the grid M the
above requirement introduces for consideration the parameter D/M, which has to
be reasonably high in order to avoid these wall effects on the flow development. In
this context, however, Le represents a longitudinal length scale which characterizes the
dissipative motions, which are mostly taking place at the level of small-scale eddies
which are isotropic although, indirectly, they may be affected by the motion of the
large eddies. Thus no direct effect of D is expected on Le and therefore Le can reach
values of the order of D.

In order to estimate the length scales in the longitudinal ξ1-direction and normal
ξ2-direction, the cross-correlation coefficients

rij(ξk) =
ui(x)uj(x+ ξk)√
u2
i (x)

√
u2
j (x+ ξk)

were evaluated by two-point measurement in the ξ2-direction and from auto-
correlations in the ξ1-direction after invoking Taylor’s hypothesis.

Figure 23 shows the L11(ξ1) scale in the longitudinal direction for the three different
flow cases. There exists some scatter in the data at each particular case which is
attributed to the various grids used. No attempt has been made to present any ReM
effects since no clear trend or pattern among the data obtained could be identified.
From the data of figure 23, it can be seen that the integral length scale increases
with downstream non-dimensional distance x/M for all cases investigated. It is also
evident that L11 in the case of Mflow = 0.475 is higher than in the case of Mflow = 0.36.
However when the flow Mach number increases to Mflow = 0.6 and therefore stronger
compressibility effects are present, then the values of the integral length scale drop.

The two-point correlation r11(ξ2) in the lateral direction ξ2 of the longitudinal
velocity fluctuations is shown in figure 24. These data were obtained by a specially
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Figure 24. Space correlation in the lateral direction for three different flow cases. x/M = 45;
5× 5 grid.

designed cross-correlation probe consisting of six parallel wires and three temperature
wires separated from each other by 1 mm. Not all the curves cross the zero line and
therefore it is very difficult to integrate them in order to obtain the classically defined
length scale in the lateral direction. However-the slopes of these curves are indicative
of their trend. It is rather obvious that the length scales are reduced with increasing
flow Mach number. This behaviour is very similar to that of L11(ξ1).

The effect of Mach number on Taylor’s microscale computed from

ε = 15ν

(
∂u

∂x

)2

= 15ν
u2

λ2

is shown in figure 25 for three different Mach numbers and for one grid with mesh
size 12.7 mm. Taylor’s microscale appears to increase with increasing Mach number.
Increase of Taylor’s microscale is also observed in flow fields produced by coarser
grids. This is shown in figure 26 where the data from four different grids are plotted
for the same flow Mach number. It is clear that the coarser the grid, i.e. larger mesh
size, the greater Taylor’s microscale. The dependence (increase) with increasing x/M,
as shown earlier for the dissipation length scale, is also shown for Taylor’s microscale.
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Figure 26. Taylor’s microscale for several mesh sizes. Mflow = 0.475.

However, in the case of the grid with M = 5.08 mm, which is considered a fine grid,
λ appears to decrease with Mflow (not shown here). This difference in the behaviour
between the coarse and fine grids is a direct outcome of a similar behaviour in the
dissipation distribution which was discussed earlier in reference to dissipation data
shown in figures 16(b) and 16(c).

The effect of the flow Mach number on the viscous scales is investigated next. The
data for three different Mach numbers are shown in figure 27 for the case of the
5× 5 grid with mesh size 5.08 mm. They all increase with downstream distance. The
results also show that as the Mach number increases, Kolmogorov’s length scale, η
decreases. This viscous scale appears to increase with increasing Mflow even in the
case of coarse grids.

The effect of mesh size/ReM on η is shown in figure 28 where the data are plotted
for four different mesh sizes and for a decaying flow field at a constant mean Mach
number of 0.6. Similar results are obtained for the rest of the flow fields tested. It
appears that η increases with increasing M or ReM , a behaviour which is similar to
that of λ or Le.

The last two figures (27 and 28) demonstrate the effects of compressibility on the
viscous scales. In particular, compressibility effects appear to reduce their size. This
behaviour imposes a severe requirement for spatial resolution in high Mach number
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Figure 28. Kolmogorov’s length scale for various mesh sizes. Mflow = 0.6.

turbulent flows. The present measurements indicate values of η ranging from 0.015 to
0.06 mm. The size of the probes, lw , expressed in terms of Kolmogorov’s length scales
appears to be ηw = lw/η = 13 for the greatest scales and 52 for the smallest scales. The
scales at error start at about half of these values, 7 and 26 respectively. Based on these
values, which determine the upper limit of the valid part of the spectrum, estimates
of the power spectral density of the spatially filtered scales have been obtained from
Wyngaard’s (1969) work for subsonic flows. It appears that the spatially filtered
scales amount to about 15% of the total spectral density of velocity fluctuations for
measurements close to the grid where η is small and less than 4% for measurements
where η is larger. The high resolution of the hot-wire probes allows us to conclude
that the results obtained in regard to the compressibility effects on the viscous scales
are not biased. In addition, the estimates of dissipation obtained from the decay rate
of q2 seem to be much less affected by the effects of inadequate spatial resolution
than those obtained from spectra. One explanation of this immunity of ε to spatial
resolution errors is a possible cancellation of uncertainties in the measurements of
q2 when the longitudinal gradient ∂q2/∂x is computed. Thus the uncertainty in the
estimates of η may be considerably lower than the 4% to 15% range quoted above.

In summary, the results of the present investigation indicate that dissipation rate,
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No. Grid x/M Mflow U1(m s −1) ρ(kg m−3) P (KPa)

1 2× 2 48 0.308 121 1.59 155
2 2× 2 48 0.388 151 1.74 174
3 3× 3 72 0.362 139 1.7 170
4 3× 3 72 0.425 161 1.84 188

Table 4. Bulk flow parameters for in vorticity measurements.

dissipation length scale and Taylor’s microscale are strongly affected by the flow Mach
number Mflow . In flows produced by fine grids dissipation increases with increasing
Mflow while Le and λ are reduced. In the case of flows generated by coarse grids,
dissipation decreases with increasing Mflow and Le and λ increase with Mflow . Lateral
integral length scales and viscous length scales are reduced with increasing Mflow .
This work also demonstrates that for high Mach numbers flows, all length scales, i.e.
Le, λ and η, increase with increasing mesh size or ReM .

14. Vorticity and enstrophy
Four additional experiments were carried out with the new multi-wire vorticity

probe. Table 4 shows the bulk flow parameters of the experiments, which were
performed at two different flow Mach numbers and with two different grids.

Figures 29(a) and 29(b) show the power spectral density of the turbulent kinetic
energy (TKE) 1

2
uiui and enstrophy 1

2
ωiωi weighted by the wavenumber k1 = 2π/λ as

measured in the present investigation for the case of the 2 × 2 grid. The streamwise
wavenumber k1 = 2πf/U1 was computed by assuming the local longitudinal mean
velocity as the convection velocity (Taylor’s hypothesis). Wavenumbers have been
non-dimensionalized by the mesh size M. In the case of Mflow = 0.308 which is shown
in figure 29, the maximum value of the spectral density of turbulent kinetic energy
occurs at approximately k1M = 4.5 while the maximum value of the spectral density
of enstrophy occurs at about k1M = 7. This difference in the maxima of spectral
energies indicates a shift towards higher wavenumbers of enstrophy fluctuations,
which suggests that they are mainly a result of a greater proportion of contributions
by the smaller scales whereas the kinetic energy contains contributions from relatively
larger eddies.

In the case of Mflow = 0.388, shown in figure 30, the maximum energy of TKE is
found to occur at about the same wavenumber as in the case of Mflow = 0.308 i.e. at
k1M = 4.5, while the maximum energy of enstrophy occurs at a lower wavenumber
k1M = 5.8. Once more, the data show that there is a shift towards higher wavenumbers
in the case of enstrophy maxima. However, it appears that increasing Mflow reduces
the difference between the wavenumbers where the maxima of kinetic energy and
enstrophy occur. If one considers that the peak in TKE represents the size of large-
energy-containing eddies and that the peak in enstrophy represents mostly small
energy dissipating eddies then it would be expected that this difference or shift
increases with increasing Reynolds number. The fact that this shift decreases with
Mach number in the present case indicates that the effect of Mflow in reducing this
difference becomes stronger than the effect of Reynolds number in increasing it.

Similar observations can be made in the case of the 3 × 3 grid for the two
experiments carried out with this grid. Figures 29(c) and 29(d) show the spectral
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Figure 29. Weighted power spectral densities for turbulent kinetic energy and enstrophy:
(a) Mflow = 0.308, M = 12.7 mm; (b) Mflow = 0.388, M = 12.7 mm; (c) Mflow = 0.362, M = 18.4 mm;
(d) Mflow = 0.425, M = 8.4 mm.

densities of TKE and enstrophy for the Mflow = 0.362 and 0.425 cases respectively.
The maximum spectral density of TKE occurs at about k1M = 2 in both flows.
However, the maximum spectral density of enstrophy occurs at k1M = 5.6 in the case
of Mflow = 0.362 and at k1M = 3.8 in the case of Mflow = 0.425. Thus the initial
wavenumber difference of 3.6 observed in the lower Mach number case is reduced by
about 50% in the case of Mflow = 0.425.

Figure 30(a) shows a semi-logarithmic plot of the probability density function (p.d.f.)
of the three vorticity components for the case of M = 12.7 mm and Mflow = 0.308.
The quantity M/U1 has been used to non-dimensionalize vorticity. The data show
that the p.d.f.s of the vorticity components overlap substantially, as is expected to
occur under isotropic conditions. The present data also indicate that these p.d.f.s have
a Gaussian distribution. As the flow Mach number increases to Mflow = 0.388 the
p.d.f.s of vorticity start to deviate from the Gaussian distribution (see figure 30b).
The data show that the three p.d.f.s collapse quite well on each other indicating a
good degree of isotropy. However, the probability of higher amplitudes which are
characterized by the tails of the distributions are lower than the probability predicted
by the Gaussian distribution. This is the first evidence that compressibility starts to
affect the high-amplitude events of vorticity first.

Similar behaviour can be seen in the p.d.f.s of vorticity components for the case
of M = 8.47 mm. These p.d.f.s are plotted in figures 30(c) and 30(d) for the flow
cases with Mflow = 0.362 and 0.462 respectively. Both figures indicate a good degree
of isotropy of the vorticity field. In the higher Mflow case, as in the case with the
M = 12.7 mm grid, the tails of the distributions start to deviate from the Gaussian
distribution, indicating the effect of compressibility.

The p.d.f.s of the enstrophy ωkωk for the two cases of experiments with the two
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Figure 30 (a, b). For caption see page 268.

different grids, M = 12.7 mm (2 × 2) and M = 8.46 mm (3 × 3), are shown in figure
31. Enstrophy values have been non-dimensionalized by (M/U1)

2. Enstrophy is a
very significant quantity in fluid dynamics. It is not only related to the solenoidal
dissipation, as was mentioned in § 6, but also to the invariants of the rate-of-strain
matrix sij . In addition, enstrophy is a source term in the transport equation of
dilatation skk:

D(skk)

Dt
= −sikski + 1

2
ωkωk +

1

ρ2

∂ρ

∂xk

∂p

∂xk
− 1

ρ

∂2p

∂xk∂xk
+

∂

∂xk

1

ρ

∂τkq

∂xq
. (14.1)

This transport equation shows the change of dilatation along a particle path, which
can be caused by the straining action of the dissipative motions (siksik) as well as by the
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Figure 30. Probability distributions of vorticity components; (a) Mflow = 0.308, M = 12.7 mm;
(b) Mflow = 0.388, M = 12.7 mm; (c) Mflow = 0.362, M = 8.4 mm; (d) Mflow = 0.425, M = 8.4 mm.

rotational energy of the spinning motions as expressed by the enstrophy (1/2)ωkωk .
Pressure and density gradients as well as viscous diffusion can also affect dilatation. It
should be noted that the above transport equation reduces to the well-known Poisson
equation

1

ρ

∂2p

∂xk∂xk
= −sikski + 1

2
ωkωk (14.2)

for incompressible flows of constant density (skk = 0).
The distribution of the p.d.f.s shown in figure 31 indicates that most of the

data i.e. data with high frequency of occurrence are mainly associated with low-
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amplitude fluctuations of enstrophy. However, it appears that there exist rare events,
i.e. events with low probability of occurrence, which have extremely high amplitude
of enstrophy and which may be of significant importance in the dynamics of the
fluid. This behaviour, observed in all experiments, is indicative of highly fluctuating
quantities.

Since the distributions shown in figure 31 are not normalized, the area under each
them is indicative of the mean value of enstrophy. The data show that enstrophy
decreases with increasing Mflow . In the case of the 2× 2 grid with M = 12.7 mm, for
instance, the mean value of enstrophy reduces by 25% when the flow Mach number
increases by about 25%. In the case of the 3 × 3 grid enstrophy is decreased by
50% when the Mach number increases by 17%. Thus it appears that the effect of
compressibility is to reduce enstrophy fluctuations. Even in the present cases of rather
weakly compressible flows the effects on enstrophy are rather substantial.

It is very interesting to compare the effects of compressibility on velocity fluctuations
with those on enstrophy fluctuations. Velocity fluctuations increase with increasing
Mflow while enstrophy fluctuations decrease. Are these two results incompatible?
The answer is no, if one considers that enstrophy varies as u2/λ2 or better in non-
dimensional terms as (u/U)2(M/λ)2. It appears that (λ/M)2 increases substantially
faster with Mflow than (u/U)2, confirmed by the present data. In addition, the variation
of dissipation rate with the flow Mach number is exactly the same as that of
enstrophy. Thus the conclusion that compressibility decreases enstrophy fluctuations
and increases velocity fluctuations, appears to be genuine.

Figure 32 shows distributions of the p.d.f.s of the dilatation (1/ρ)Dρ/Dt = −skk
as measured in the four different experiments of the present investigation. Values are
non-dimensionalized by M/U1. The mean value of dilatation in this homogeneous
flow is expected to be zero and the experimental data confirm it. The level of dilatation
fluctuations is about 1/8 to 1/20 of the level of vorticity fluctuations. A comparison of
the level of dilatational fluctuations with the range of vorticity fluctuations as depicted
from the p.d.f.s shown in figures 30 and 32 indicates that the former are about 5% to
7.5% of the latter in the case of the 2×2 grid (M = 12.7 mm) depending on Mflow , and
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Figure 33. Probability distributions of compressible dissipation.

13% in the case of the 3 × 3 grid (M = 8.4 mm). These values are typical of weakly
compressible turbulence with rather low fluctuations of Mach number (turbulent
Mach number). Nevertheless compressibility effects are detectable. For instance, the
data of figure 32 in the case of the 2×2 grid clearly show that dilatational fluctuations
increase considerably with Mflow , while vorticity and enstrophy fluctuations decrease.

In the case of the 3× 3 grid no substantial differences between the flows with
two different Mach numbers could be detected. However, this may be an effect of
the way dilatation is non-dimensionalized by M/U1 since dimensionalized values of
(1/ρ)Dρ/Dt fluctuations are about 20% higher in the case of the Mflow = 0.425 than
those in the lower Mflow = 0.388 case.

Distribution of p.d.f.s of the non-dimensionalized quantity skkskk(M/U1)
2 which

represents the dilatational part of dissipation are shown in figure 33. This term in
the present case of rather weakly compressible turbulence is about 50 to 100 times
smaller than the corresponding solenoidal dissipation. In that sense its direct effect on
turbulence may not be significant. Nevertheless it is important to understand how it
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changes with Mach number. In the case of the 2×2 grid (M = 12.7 mm) compressible
dissipation increases with Mflow while solenoidal dissipation decreases. The data also
show that rare events with stronger amplitudes are present in the Mflow = 0.425 case
than in the Mflow = 0.388 case.

No differences in the distributions of compressible dissipation between the two flows
could be discerned in the case of the 3× 3 grid. However, this effect can be attributed
to the non-dimensionalizing parameter (M/U1)

2 because the raw, dimensionalized
data indicated a 50% increase in the values of compressible dissipation.

The transport equation of vorticity

Dωi
Dt

= sikωk − ωiskk + εiqη
1

ρ2

∂ρ

∂xq

∂p

∂xη
+ εiqη

∂

∂xq

(
1

ρ

∂τηj

∂xj

)
(14.3)

describes four dynamically significant processes for the vorticity vector ω, namely
stretching or compression and tilting by the strain sik , vorticity generation through
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dilatation, baroclinic generation through the interaction of pressure and density
gradients and viscous diffusion. In the present work the first two terms have been
evaluated directly. The baroclinic term could not be measured but order of magnitude
analysis showed that it is rather small in the present flow. If the viscous term can
be also ignored since its magnitude is also small, then the change of vorticity of a
fluid element in a Lagrangian frame of reference can be entirely attributed to vortex
stretching and/or tilting and to dilatational effects.

Figure 34 shows distributions of the p.d.f.s of the longitudinal component of the
stretching vector s1kωk for the four experiments carried out in the present investigation.
Values are non-dimensionalized by (M/U1)

2 and plotted in semi-logarithmic scale.
A typical characteristic of all distributions is their long tails which are indicative of
strong but rare events with substantial contribution to the stretching process. The
data also show that stretching fluctuations decrease with increasing Mflow . In both
experiments with the two different grids, mean and fluctuating stretching appears to
be lower in the cases of high Mflow than in the cases of low Mflow . This behaviour
is not surprising because vorticity is reduced with increasing flow Mach number
and therefore source terms are expected also to decrease. However the dilatational
generation of vorticity is affected by the flow Mach number in the opposite way.
Figure 35 shows the distributions of the p.d.f.s of ω1skk which describes the generation
of vorticity by the expansion or compression of the rate of change of the specific
volume since −(1/ρ)(Dρ/Dt) = (1/V )(DV/Dt) = skk . In the case of the 2 × 2 grid
(M = 12.7 mm), a substantial increase in the level of fluctuations can be observed
when the flow Mach number increases. This indicates that dilatational fluctuations,
which increase with increase in Mflow , dominate over vorticity fluctuations which
are reduced with increased Mflow . Since dilatational stretching ω1skk enters equation
(14.3) with opposite sign to s1kωk , the net effect is that the quantity s1kωk − ω1skk
decreases with increasing Mflow . Thus vorticity fluctuations are expected to decrease
with increasing Mach number.

No substantial differences can be observed between the two distributions in the case
of the 3× 3 grid (M = 8.4 mm). This again can be attributed to the way the data are
made non-dimensional, since the raw dimensionalized data show that compressibility
increases the fluctuations of ω1skk . The long tails of the distributions also suggest that
rare but violent events are substantially affecting these processes.

Some further insight of the dynamical processes involved in these flows can be
gained by looking at the instantaneous signals of the various quantities present in the
transport equations mentioned above. Figure 36(a) shows signals of dissipation ωkωk ,
dilatational dissipation skkskk , the three components of the vorticity stretching vector
s1kωk, s2kωk, s3kωk , and the three components of the dilational stretching vector ω1skk ,
ω2skk , ω3skk . Each signal has been normalized by its r.m.s. and has been displaced by
a multiple of 5 r.m.s. units for better visual aid. All signals exhibit a rather strong
intermittent behaviour which is characterized by bursts of high-amplitude events,
which sometimes reach values up to 5 to 8 r.m.s. units, followed by less violent
periods. Several of these bursts are evident in all signals, suggesting the existence of
a dynamical flow phenomenon which may be the common cause.

It is also interesting to observe that the correlation between any two of these signals
seems to be higher during any of the those violent events. In general there is some
statistical correlation in several of the signals. For instance, a correlation coefficient of
about ±0.04 has been obtained between enstrophy and any of the vorticity stretching
components. During violent events which involved substantial vorticity stretching or
compressing activities, this coefficient can be 2 to 5 times higher.
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Figure 37. Typical signals; Mflow = 0.388, M = 12.7 mm.

A comparison between ωkωk and skkskk shows that there is some correlation between
them since some bursts can be observed on both signals. However there are same
strong events on one signal without a corresponding event on the other. Figure 36(b)
shows a portion of the previously signals expanded in time, with annotated boxes
where several of the previous discussed characteristics and features are highlighted.
The first box, centred at about time = 2212, for instance, shows strong events which
can be identified on all signals. The second box at about time = 2260 shows an event
detectable on ωkωk but not on skkskk . The third box at about time = 2330 shows
an event on skkskk without a corresponding counterpart on ωkωk . The signals also
indicate that the duration of the strong events on skkskk is considerably shorter than
the events identified on the ωkωk signal.

The signals obtained in the experiment withMflow = 0.388 and grid ofM = 12.7 mm
are shown in figure 37. They exhibit similar characteristics to the signals of figure
36. However the amplitude and the frequency of these bursting events appear to be
higher while their duration is shorter than in the experiment with the lower Mach
number.

15. Conclusions
The effects of compressibility in a nearly homogeneous and nearly isotropic flow

of decaying turbulence have been investigated experimentally by carrying out high-
resolution measurements in a large-scale shock tube research facility. A variety of
grids of rectangular pattern of different mesh size was used to generate the flow field.
The Reynolds number of the flow based on the mesh size, ReM , ranged from 50 000
to 400 000, while the turbulent Reynolds number Reλ based on Taylor’s microscale λ
was between 200 and 700, which constitutes one of the highest scales ever achieved
in laboratory flow. The range of Mach number of the flows investigated was between
0.3 and 0.6 which was low enough to assure a shock-free flow and high enough to
contain compressibility effects.
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The effects of compressibility can be classified into two categories. The first category
includes those effects which have a direct impact on the flow. Compressible dissipation,
for instance, is a typical example of a quantity which expresses a direct effect of
compressibility on total dissipation. The indirect effects comprise the second category,
which include those which change the local or global behaviour of the flow and
therefore may cause significant changes of the incompressible part of the flow.
Increasing the Mach number of the flow, for instance, can change the level of
turbulent fluctuations in the flow which may subsequently affect the dissipation rate,
particularly the incompressible part which accounts for most of the total dissipation in
cases like the present subsonic flow. Direct effects of compressibility on turbulence may
be described by the turbulent Mach number Mt, while indirect effects on turbulence
may be characterized by the flow Mach number Mflow , and the Reynolds number
ReM . The parameters Mt, Mflow and ReM , however, are not completely independent
from each other. A change in any of the three may cause a change in the other two.
In that respect, the effects which each of the nominally independent variables impose
on the flow may be difficult to distinguish. An attempt has been made here to identify
the effects of Mflow and ReM on homogeneous and isotropic turbulence.

The isotropy of the present flow was verified experimentally and it was found to be
within the range reported for incompressible flows. In fact, it was established for the
first time that isotropic compressible turbulence at moderate subsonic Mach numbers
can be set up experimentally. The decay of Mach number fluctuations was found to
follow a power-law behaviour similar to that describing the decay of incompressible
isotropic turbulence

M2
t = B

[ x
M
−
( x
M

)
0

]−n
,

where B, (x/M)0 and n are constants depending on the flow Mach number as well
as on ReM and the grid. These constants have been determined concurrently so that
the residual deviation from the original data is minimized. This approach represents
a departure from previous practices where one of the three parameters was fixed and
the other two were determined through a best fit of the data. In that context, direct
comparison of the present data with previously obtained values of any of the three
constants may not be feasible. A direct consequence of the procedure followed in this
investigation may be that the exponent n has been found to reach values below 1,
which indicates, in principle, a slower decay rate than that found in many previous
cases under the assumption that one of the three unknown constants should be fixed.

In the present work, it was possible to investigate the effects of the Mach number
and ReM on the flow development independently from each other. The virtual origin
tends to a reasonably constant value of 4.5 at high ReM which is independent of the
flow Mach number. The decay coefficient B and the decay exponent n decrease with
increasing Mach number while the virtual origin (x/M)0 increases with increasing
Mach number at a fixed ReM .

Most probably the mechanism responsible for this effect is the inherently slow
growth rate of compressible shear layers emanating from the cylindrical rods of the
grid. Figure 38(a) shows a typical merging of shear layers to form an isotropic flow in
the case of incompressible flows. The case of compressible shear layers is depicted in
figure 38(b) where it is shown how a lower growth rate can result in a longer virtual
origin. If a shock wave had been formed in the vicinity of the grid as in the case of
Zwart et al. (1997) the decay rate would have been drastically affected. Shock waves
or shocklets are not likely to appear at the present Mach numbers and therefore it
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Figure 38. (a) Incompressible and (b) compressible shear layer growth.

is plausible to attribute the present results to the lower growth rate of compressible
shear layers.

The dissipation rate of turbulent kinetic energy was found to increase with increas-
ing flow Mach number for fine grids and decrease with increasing Mflow for coarse
grids. As a result Le and λ follow a similar pattern.

All longitudinal length scales increase with increasing Mflow while lateral integral
length scales and viscous length scales are reduced with increasing Mflow . This work
also demonstrated that in high Mach numbers flows, all length scales, i.e. Le, λ and
η, increase with increasing mesh size or ReM .

An attempt has also been made to measure all time-dependent velocity gradients
involved in vorticity, its stretching, enstrophy and dissipation rates, with adequate
spatial and temporal resolution. This allowed estimates of dilatation skk , compressible
dissipation s2kk and compressible stretching ωiskk to be obtained. These quantities
are directly associated with compressibility effects. A common feature of all these
quantities is that their fluctuations, properly normalized by M and U1, increase with
increasing Mach number of the flow. Although this behaviour may be expected, if
one considers that in compressible shear layers increasing Mflow suppresses turbulent
fluctuations then this conclusion is surprising.

The results of the present investigation have also shown that enstrophy fluctuations,
which comprise the solenoidal part of dissipation, reduce with increasing Mflow , a



Structure of weakly compressible grid-generated turbulence 277

Increasing Increasing
Mflow ReM/M

A ⇓ m
(x/M)0 ⇑ ⇓
n ⇓ m
u ⇑ m
Mt ⇑ m
ε ⇑ Fine grids; m

⇓ Coarse grids

εM/U3 ⇑ Fine grids; m
⇓ Coarse grids

Le ⇑ Coarse grids; ⇑
⇓ Fine grids

λ ⇑ Coarse grids; ⇑
⇓ Fine grids

η ⇓ ⇑
L11(ξ1) m ⇓
L11(ξ2) ⇓ m
s′kkM/U3 ⇑
s2kkM/U3 ⇑
ωis

′
kkM/U3 ⇑

Table 5. Summary of conclusions for the decaying isotropic flow field: ⇑ represents that the
parameter increases with increasing Mflow or increasing mesh size/ReM; ⇓ that it decreases; and m
that it presents no specific trend.

conclusion which is also verified by the results of dissipation obtained through the
decay rate of turbulent kinetic energy for the case of coarse grids. The present data
also indicate that the fundamental reason for the reduced turbulent fluctuations with
increasing flow Mach number is the reduction in the stretching activities at higher
Mach numbers.

The time-dependent signals of enstrophy ωkωk , dilatation skk , compressible dissipa-
tion s2kk , and the three components of the stretching vectors ωkski and ωiskk indicated
a highly intermittent behaviour which is characterized by bursts of high amplitude
followed by less violent periods. The results also show that the mean values of all
these quantities are considerably smaller than their r.m.s. values, which suggests that
time-averaged vorticity transport equations are of very limited value in understanding
vorticity related phenomena.

Table 5 summarizes the conclusions for the parameters that were investigated in
this work and their response to an increase of the mean flow Mach number and an
increase in the mesh size/ReM .

The financial support provided by NASA Grant #NAG-1590 monitored by Mr
Dennis Bushnell and by AFOSR Grant #F49620-98-0358 monitored by Dr Steve
Walker is greatly acknowledged.
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Figure 39. Effects of variation of A on several flow parameters.

X = q2

ε

Le
k

1.2

1.1

1.0

0.9

0.8
–10 –5 0 5 10 15

D(x /M)0(%)

X
ca

lc
/X

ex
p

Figure 40. Effects of variation of (x/M)0 on several flow parameters. Symbols as figure 39.

Appendix. Sensitivity analysis of decay relations
The sensitivity of the power law coefficients A, (x/M)0, and n to changes of the

level of the average values of the turbulent kinetic energy was found by introducing
modified values of turbulent kinetic energy, within the limit of their uncertainties,
into the optimization algorithm to determine the new values of these coefficients and
subsequently their effect on the dissipation rate of kinetic energy, ε, the dissipative
length scale, Le and Taylor’s microscale λ.

When the values of kinetic energy were allowed to change consistently and uni-
formly for all measurements, then the effect was only felt in A and ε, which changed
by the same amount, while the dissipative length scale (Le) changed by approximately
half as much and Taylor’s microscale (λ) by much less. For example, if the values of
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Figure 41. Effects of variation of n on several flow parameters. Symbols as figure 39.

kinetic energy were consistently increased by 10% then A and ε increased by 10%, Le
increased by approximately 5%, and λ increased from 3% to less than 1% depending
on x/M. For larger sizes of λ (greater x/M) the least deviation from the reported
values was found. The opposite trend was found when the values of turbulent kinetic
energy were consistently decreased by 10%.

Turbulent kinetic energy was also allowed to vary in an alternating fashion. Thus
every other measurement was allowed to increase or decrease by 10%, i.e. the first
measurement was increased by 10%, the second was decreased by 10%, the third
was increased by 10% and so on. The effect was felt, as expected, on all coefficients
of the power law: A decreased by 20%, the position of the virtual origin increased
by 15% and the power exponent decreased by 26%. As a result, the dissipation rate
of kinetic energy decreased by 17%, the dissipative length scale increased between
6.7% and 20% and Taylor’s microscale increased by 4% to 10% depending on x/M.
The opposite trend was found for all power-law coefficients and flow field parameters
when the first measurement was decreased by 10%, the second increased, etc.

Since all data were acquired simultaneously at multiple locations in the flow field,
the uncertainty associated with the measurements of velocity fluctuations is expected
to be consistent for all measured locations. Therefore the first case, where consistent
variation was applied to the measured kinetic energy fluctuations, will provide the
most probable estimate of the uncertainty propagation in the computation of ε, Le
and λ. That is, a maximum change of 10% in ε, 5% in Le and 3% in λ can be
assumed if a 10% perturbation in the values of turbulent kinetic energy is introduced.

In addition to the above, several tests were performed to determine the effects of
variation of the coefficients of the power law individually on q2, ε, Le and λ. Figure
39 presents the effect of the decay coefficient variation on the above-mentioned flow
parameters; the virtual origin (x/M)0, and the decay exponent were kept constant.
It can be seen that the fluctuations of kinetic energy and the dissipative length scale
react linearly to the variation of A. For a ± 20% variation in A, q2 and Le vary up to
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Figure 42 (a–c). For caption see facing page.
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Figure 42. Effects of ∆A, ∆(x/M)0 and ∆n variation on several flow parameters.

± 10%. Similar behaviour is found for ε where for ± 20% variation in A there is the
same variation in ε. Taylor’s microscale is insensitive to the variation of A.

The effect of change of the location of the virtual origin is shown in figure 40.
It can be seen that there is a minimal effect on turbulent kinetic energy while for
± 10% variation in the location of the virtual origin none of the flow parameters is
affected more than ± 12%. Of interest is also the inversely proportional trend of the
variation of Le and λ on ∆(x/M)0. Again here the variation of ε is proportional to
the variation applied (i.e. ∆(x/M)0).

The effect of variation of the decay exponent (n) on the flow parameters was also
examined by performing an analysis with a ± 20% variation of its original value. The
results of this test are shown in figure 41. The first observation is that q2 and ε were
not affected more than ± 7%; the second is that Le and λ were nonlinearly affected
by the variation of n with Le being affected most when n was decreased.

These results indicate that individual variations of the decay coefficients up to
± 10% produced, in most of the cases, variations in the flow parameters less or at
most equal to 10% for q2, ε or λ and up to 15% for Le. The question that remains
to be answered is what are the combined effects of concurrent variations of the
decay coefficients on the flow parameters. Because of the multiple combinations in
the variation of the decay coefficients, only a few cases will be presented here to
illustrate the combined effects. Several of these cases are presented in figure 42. It
is interesting to investigate if the resultant effect will compound or be additive. In
the first case, regardless of the variation of the decay coefficients, the change will
keep adding and therefore it will never cancel out. If the second case holds then
it is possible to cancel the various partial effects in one or more flow parameters.
Indeed if we will consider the combined variation introduced by the variation of the
individual power law coefficients (shown in figures 39 to 41) then it can be verified
for the different cases presented in figure 42 that the average total effect on q2 and ε
appears to be approximately additive and not compound. The same behaviour does
not hold for Le and λ.

Nevertheless figure 42 shows that even if each of the power-law coefficients is
overestimated by 10% the total effect propagated in q2 is minimal, while the dissi-
pative length scale and Taylor’s microscale will be underestimated by 13% and 7%
respectively. Overestimation of the dissipation rate of kinetic energy will occur in the
order of 20%.
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From all of the above results, it can be concluded that the flow parameters remain
within reasonable limits of deviation even when the power-law coefficients are allowed
to vary in an arbitrary manner.
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